$$\int_{1}^{\infty}\frac{((\left \lfloor x \right \rfloor-1)!)^2}{(2\left \lfloor x \right \rfloor-1)!}dx$$
What I do so far
$$\int_{1}^{\infty}\frac{((\left \lfloor x \right \rfloor-1)!)^2}{(2\left \lfloor x \right \rfloor-1)!}dx = \sum_{n=1}^{\infty}\int_{n}^{n+1}\frac{((n-1)!)^2}{(2n-1)!}dx$$
$$\int_{n}^{n+1}\frac{((n-1)!)^2}{(2n-1)!}dx = \frac{((n-1)!)^2}{(2n-1)!} \cdot (n+1 - n) = \frac{((n-1)!)^2}{(2n-1)!}$$
$$\sum_{n=1}^{\infty}\frac{((n-1)!)^2}{(2n-1)!}$$ = \begin{align*} \frac{2\pi}{3\sqrt{3}} \end{align*}