Since you're not familiar with the dominated convergence theorem, I'll approach this using elementary methods. Set
$$f_x(x)=\left(\frac{t^x-1}{t^x+1}\right)^2=\left(1-\frac{2}{t^x+1}\right)^2.$$
The goal is to show that
$$\lim_{x\to0}\int_0^1 f_x(t)~\mathrm{d}t=0.$$
I'll start by showing that
$$\lim_{x\to 0}\int_\delta^1 f_x(t)~\mathrm{d}t=0$$
for all $\delta\in(0,1)$. So fix $\delta\in(0,1)$. Then, for any $t\in[\delta,1]$ we have that
$$f'_x(t)\leq0$$
(check this for yourself), so $f_x$ is decreasing on $[\delta,1]$. In particular then
$$0\leq f_x(t)\leq f_x(\delta).$$
Consequently
$$0\leq \int_\delta^1 f_x(t)~\mathrm{d}t\leq \int_\delta^1f_x(\delta)~\mathrm{d}t=f_x(\delta)(1-\delta),$$
and so as
$$\lim_{x\to0}f_x(\delta)=\lim_{x\to0}\left(1-\frac{2}{\delta^x+1}\right)^2=0,$$
it follows that
$$\lim_{x\to 0}\int_\delta^1 f_x(t)~\mathrm{d}t=0.$$
Let us now use this limit to prove our result. Let $\varepsilon>0$. Observe that
$$0\leq f_x(t)\leq 1$$
for all $t\in[0,1]$ and all $x\in\mathbb{R}$, so
$$0\leq\int_0^{\frac{\varepsilon}{2}} f_x(t)~\mathrm{d}t\leq\int_0^{\frac{\varepsilon}{2}}\mathrm{d}t=\frac{\varepsilon}{2}.$$
Using the limit we proved before, we now find a $\xi>0$ such that
$$0\leq \int_{\frac{\varepsilon}{2}}^1 f_x(t)~\mathrm{d}t<\frac{\varepsilon}{2}$$
whenever $\lvert x\rvert<\xi$. It now follows that whenever $\lvert x\rvert<\xi$,
$$0\leq\int_0^1 f_x(t)~\mathrm{d}t=\int_0^{\frac{\varepsilon}{2}}f_x(t)~\mathrm{d}t+\int_{\frac{\varepsilon}{2}}^1f_x(t)~\mathrm{d}t<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$
It follows that
$$\lim_{x\to0}\int_0^1f_x(t)~\mathrm{d}t=0,$$
from which your limit follows.