Is there a general solution or pattern in the following series of integrals?
$$S(n)=\idotsint_{-\infty}^{\infty} \frac{\sin(x_1^2+x_2^2+...+x_n^2)}{x_1^2+x_2^2+...+x_n^2}\, dx_1 \dots dx_n$$
I can solve the first integral $$S(1)=\int_{-\infty}^\infty\frac{\sin(x^2)}{x^2} dx$$
$$=2\int_{0}^\infty\frac{\sin(x^2)}{x^2} dx$$ Subbing $t$ for $x^2$: $$=\int_{0}^\infty\frac{\sin(t)}{t^{3/2}} dt$$
Using the Laplace Transform functions, $\mathcal{L}(\sin t)=\frac{1}{1+p^2}$ and $\mathcal{L}^{-1}(t^{-3/2})=\frac{2}{\sqrt\pi}\sqrt{p}$:
$$=\frac{2}{\sqrt{\pi}}\int_{0}^{\infty}\frac{\sqrt{p}}{1+p^2} dp =\frac{4}{\sqrt{\pi}}\int_{0}^{\infty}\frac{x^2}{1+x^4} dx$$
And the last integral has been solved here through various methods to be $\frac{\pi}{2\sqrt{2}}$, meaning $S(1)=\sqrt{2\pi}$.
As another quick example, the second integral
$$S(2)=\iint_{-\infty}^\infty\frac{\sin(x^2+y^2)}{x^2+y^2} dx\, dy$$
can be solved by converting to polar coordinates where $r^2=x^2+y^2$.
$$=\int_0^{\infty}\int_0^{2\pi}\frac{\sin(r^2)}{r} d\theta\, dr =2\pi\int_0^{\infty}\frac{\sin(r^2)}{r} dr =\pi\int_0^{\infty}\frac{\sin(x)}{x} dx =\frac{\pi^2}{2}$$
Obviously, these techniques don't work as more variables of integration are added. What are the higher values of $S(n)$ and is there a general formula?