3

If $f(z)=\sum a_nz^n$, what is $\sum n^3a_nz^n$?

The desired sum is $a_1z+8a_2z^2+27a_3z^3+\cdots$. I can't see how to write the desired sum in terms of $f$. For example, I could substitute $kz$ for $z$ to get $f(kz)=\sum k^na_nz^n$, but that doesn't help me get the coefficient $n^3$.

PJ Miller
  • 8,193

5 Answers5

4

Hint: Differentiate, multiply by $z$, differentiate, $\dots$.

André Nicolas
  • 507,029
  • I see, thanks! The answer should be $z^3f'''(z)+3z^2f''(z)+zf'(z)$, if my calculation is correct. – PJ Miller Aug 27 '13 at 18:49
  • Yes, that's the right answer. If $r$ is the radius of convergence of the original series, the expression is only valid for $z|\lt r$. – André Nicolas Aug 27 '13 at 19:35
3

If $f(z)=\sum a_nz^n$, then $zf'(z) = \sum n a_n z^n$. Applying this thrice you would get-

$\sum n^3 a_n z^n = z \left(f'(z) + 3z f''(z) + z^2 f'''(z)\right)$

Shitikanth
  • 1,138
2

Find the coordinates $(\alpha_0,\alpha_1,\alpha_2,\alpha_3$) of $x^3$ in the basis $(1,x,x(x-1),x(x-1)(x-2))$ of $\mathbb R_3[x]$ so $$\sum n^3a_n z^n=\alpha_0f(z)+\alpha_1 z f'(z)+\alpha_2 z^2 f''(z)+\alpha_3z^3f'''(z)$$

1

Hint: $$z(a_0 + a_1 z + a_2 z^2 + \ldots)' = a_1 z + 2 a_2 z^2 + \ldots$$

njguliyev
  • 14,473
  • 1
  • 26
  • 43
0

For the general case, you will encounter the Stirling numbers of the second kind.

In this case, you are given $f(z)=\sum_{n=0}^{\infty} a_nz^n$ and want to find $f_k(z) =\sum_{n=0}^{\infty} n^ka_nz^n $.

By repeated differentiation, $f^{(k)}(z)=\sum_{n=k}^{\infty} (n)_k a_nz^{n-k}$ where $(n)_k =n(n-1)...(n-k+1) $ is the Pochhammer symbol denoting the falling factorial.

Therefore $\sum_{n=0}^{\infty} (n)_k a_nz^{n} =z^kf^{(k)}(z) $.

We now use the definition of the Stirling numbers of the second kind: $\sum_{j=0}^k S(k, j) (n)_j =n^k $.

Note: The Stirling numbers of the first kind go the other way, expressing $(n)_k =\sum_{j=0}^k s(k, j) n^j $

These make is easy to get a formula for $f_k(z)$:

$\begin{align} f_k(z) &=\sum_{n=0}^{\infty} n^ka_nz^n\\ &=\sum_{n=0}^{\infty} a_nz^n\sum_{j=0}^k S(k, j) (n)_j\\ &=\sum_{j=0}^k\sum_{n=0}^{\infty} a_nz^n S(k, j) (n)_j\\ &=\sum_{j=0}^k S(k, j) \sum_{n=0}^{\infty} a_nz^n (n)_j\\ &=\sum_{j=0}^k S(k, j) z^k f^{(k)}(z)\\ \end{align} $

For $k=3$, $S(3, 1..3) = [1, 3, 1]$, so $\sum_{n=0}^{\infty} n^3a_nz^n =z^3 f'''(z)+3z^2f''(z)+zf'(z) $.

For $k=4$, $S(4, 1..4) = [1, 7, 6, 1]$, so $\sum_{n=0}^{\infty} n^4a_nz^n =z^4 f^{(4)}(z)+7z^3 f'''(z)+6z^2f''(z)+zf'(z) $.

marty cohen
  • 107,799