We seek to prove that with $1\le q\le n$ and $0\le p\le 1$ that
$$\sum_{k=q}^n {k-1\choose q-1} p^q (1-p)^{k-q}
= \sum_{k=q}^n {n\choose k} p^k (1-p)^{n-k}.$$
We start on the LHS with
$$p^q \sum_{k=0}^{n-q} {k+q-1\choose q-1} (1-p)^k
\\ = p^q [z^{n-q}] \frac {1}{1-z}
\sum_{k\ge 0} {k+q-1\choose q-1} (1-p)^k z^k
\\ = p^q [z^{n-q}] \frac {1}{1-z}
\frac{1}{(1-(1-p)z)^q}.$$
This is
$$(-1)^q \frac{p^q}{(1-p)^q}
\; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{n-q+1}} \frac{1}{1-z}
\frac{1}{(z-1/(1-p))^q}.$$
Now residues sum to zero and the residue at infinity is zero so this is
minus the residue at $z=1$ plus minus the residue at $z=1/(1-p).$ The
former is one by inspection. For the latter we need the Leibniz rule:
$$\frac{1}{(q-1)!}
\left(\frac{1}{z^{n-q+1}} \frac{1}{1-z}\right)^{(q-1)}
\\ = \frac{1}{(q-1)!}
\sum_{k=0}^{q-1} {q-1\choose k}
\frac{(-1)^k}{z^{n-q+1+k}} (n-q+1)^{\overline{k}}
\frac{1}{(1-z)^{1+q-1-k}} 1^{\overline{q-1-k}}
\\ = \frac{1}{(q-1)!}
\sum_{k=0}^{q-1} {q-1\choose k}
\frac{(-1)^k}{z^{n-q+1+k}} {n-q+k\choose k} k!
\frac{1}{(1-z)^{q-k}} (q-1-k)!
\\ = \sum_{k=0}^{q-1}
\frac{(-1)^k}{z^{n-q+1+k}} {n-q+k\choose k}
\frac{1}{(1-z)^{q-k}}.$$
Evaluate at $z=1/(1-p)$ to get
$$\sum_{k=0}^{q-1}
(-1)^k (1-p)^{n-q+1+k} {n-q+k\choose k}
\frac{(1-p)^{q-k}}{(-1)^{q-k} p^{q-k}}.$$
Collecting the two contributions we find
$$1 - (1-p)^{n-(q-1)}
\sum_{k=0}^{q-1} {n-q+k\choose k} p^k
\\ = 1 - (1-p)^{n-(q-1)} [z^{q-1}] \frac{1}{1-z}
\sum_{k\ge 0} {n-q+k\choose k} p^k z^k
\\ = 1 - (1-p)^{n-(q-1)} [z^{q-1}] \frac{1}{1-z}
\frac{1}{(1-pz)^{n-q+1}}$$
On the other hand we get for the RHS
$$1 - \sum_{k=0}^{q-1} {n\choose k} p^k (1-p)^{n-k}$$
so we need to show that the coefficient extractor term is equal to the
sum, which yields
$$[z^{q-1}] \frac{1}{1-z}
\sum_{k\ge 0} {n\choose k} p^k (1-p)^{n-k} z^k
= \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^q} \frac{1}{1-z} (pz+1-p)^n.$$
Now put $z/(pz+1-p) = w$ so that $z = (1-p) w / (1 - pw)$ and
$dz = (1-p)/(1-pw)^2 \; dw$ as well as $pz+1-p = (1-p) / (1-pw)$
to obtain
$$\; \underset{w}{\mathrm{res}} \;
\frac{1}{w^q} \frac{1-pw}{1-w}
\frac{(1-p)^{n-q}}{(1-pw)^{n-q}} \frac{1-p}{(1-pw)^2}
\\ = (1-p)^{n-(q-1)} \; \underset{w}{\mathrm{res}} \;
\frac{1}{w^q} \frac{1}{1-w}
\frac{1}{(1-pw)^{n-q+1}}.$$
This is the claim.