Proof by contradiction
Assume:
$$\forall n\exists a_n\ge\frac{n}{2001!}$$
Consider:
$$a_{2001!}\ge\frac{2001!}{2001!}=1$$
now using the recurrance relation:
$$a_{2001!+9}=a_{\left\lfloor\frac{7(2001!+9)}{9}\right\rfloor}+a_{\left\lfloor\frac{2001!+9}{9}\right\rfloor}$$
$$a_{2001!+9}=a_{\left\lfloor\frac{7\times2001!}{9}+\frac{7\times9}{9}\right\rfloor}+a_{\left\lfloor\frac{2001!}{9}+\frac99\right\rfloor}$$
Now notice that $\frac{7\times2001!}{9}\in\mathbb{Z}$ and $\frac{7\times9}{9}=7$ so the first term's floor bracket contains an integer. Similarly, $\left(\frac{2001!}{9}+1\right)\in\mathbb{Z}$. As a result $a_{2001!+9}\ge1+1=2$. Repeating this for any $a_{2001!+9k}$ where $k\in\mathbb{Z^+}$ yields the same inequality. This implies: $\forall n>2001!,a_n\ge2$.
Now, comparing $a_{2\times2001!}\ge2$ to $\frac{2\times2001!}{2001!}=2$ shows a contradiction as we assumed:
$$a_n\ge\frac{n}{2001!}\forall n$$
But we have shown that:
$$a_{2\times2001!}<\frac{2\times2001!}{2001!}=2$$
Hence our initial assumption must be false:
$$\therefore\exists n\,\,s.t.\,\,a_n<\frac{n}{2001!}$$
And that completes the proof
EDIT:
Let $b_n = \frac{a_n}{n}$.
Consider $b_{2001!}$. By the recurrence relation:
$$b_{2001!} = \frac{a_{2001!}}{2001!} \geq \frac{1}{2001!}$$
Now, let's compute $b_{2001! + 9}$:
$$b_{2001! + 9} = \frac{a_{2001! + 9}}{2001! + 9}$$
Notice that $b_{2001! + 9}$ depends only on $b_n$ for $n$ in the range $[2001!, 2001!+9]$. Since there are 10 terms in this range, by the Pigeonhole Principle, at least one of these terms must be less than or equal to the average:
$\frac{b_{2001!} + b_{2001! + 1} + \ldots + b_{2001! + 9}}{10}$
Therefore, there exists $k$ such that $b_{2001! + k} \leq \frac{b_{2001!} + b_{2001! + 1} + \ldots + b_{2001! + 9}}{10}$.
Since $b_{2001!} \geq \frac{1}{2001!}$, we have:
$\frac{b_{2001!} + b_{2001! + 1} + \ldots + b_{2001! + 9}}{10} \geq \frac{1}{2001!}$
Combining the above inequalities, we get:
$b_{2001! + k} \leq \frac{1}{2001!}$
This implies:
$a_{2001! + k} \leq \frac{2001! + k}{2001!} = 1 + \frac{k}{2001!}$
Finally, since $k \geq 0$, we have:
$a_{2001! + k} < 1 + \frac{1}{2001!} \leq \frac{1}{2001!}$
This completes the proof, demonstrating that there exists an $n$ (specifically, $n = 2001! + k$) such that $a_n < \frac{n}{2001!}$.