二分完美洗牌排列 将$i \rightarrow 2i( mod (2n+1))$.
当$2n+1=3^k$时,很容易得出2分完美洗牌中的$k$个循环结构体,首先我们需要以下定理:
定理1 当p为奇素数且$g$是$p^2$的原根时$\Rightarrow$ $g$也是$p^k$的原根
定义1 欧拉函数,$\phi(m)$定义为小于等于$m$中,与$m$互素的正整数个数
定义2 对模指数,$a$对模$m$的对模指数定义为 $Ord_m(a)=d, st: a^d\equiv1(mod m)$中最小的d
定义3 若$\phi(m)=Ord_m(a)$ 则称$a$为$m$的原根
性质1 若$(a,m)=1$ 且$a$为$m$的原根,那么$a$是$(\Bbb Z/n\Bbb Z)^*$的生成元
例如n=4,则$2n+1=3^2$, ${1,2,3,4,5,6,7,8,9}包含3个循环结构{1,2,4,5,7,8} {3,6}以及{9}
与9互素的正整数集合为{1,2,4,5,7,8},因此$\phi(m)=6$, 而满足$2^d\equiv1 (mod9)$的最小$d=6$ 因此2为9的原根,同时结合原根的性质2也是整数模9乘法群${1,2,4,5,7,8}$的生成元
考虑包含$3^k$因子的其他循环结构,这些循环结构的元素必定是$3^s2^t$形式 //问题1 如何证明?
当s=0时,循环结构为{1,2,4,5,7,8}
当s=1时,循环结构为{3,6}
当s=2时,循环结构为{9}
问题2,这些结构并非循环群,为何仍然使用生成元,是否正确?
===========================================================
consider the 2 way perfect shuffle with n=4, that is with elements 1 to 8, how to prove that there are exactly 3 cyclic structures within the shuffle array 1,2,3,4,5,6,7,8. and since not all of the 3 structure are cyclic groups is it correct to use 'generator' to indicating the first element of 3 structures ?
2 way perfect shuffle will map $i \rightarrow 2i( mod (2n+1))$.
when $2n+1=3^k$, it's easy to derive the $k$ cyclic structures within 2 way perfect shuffle permutation. but the conclusion is based on this:
Thorem1 When p is odd prime and $g$ is the primitive root of $p^2$, we also have $\Rightarrow$ $g$ is also the primitive root of $p^k$
Def1 Euler function,$\phi(m)$ is defined as: for positive integers less than $m$,the number count which are co-prime with $m$
Def2 ord_m function,is defined as $Ord_m(a)=d, st: a^d\equiv1(mod m)$ minimum positive integer d
Def3 if $\phi(m)=Ord_m(a)$ then we call $a$ as primitive root of $m$
Property if $(a,m)=1$ and $a$ is the primitive root of $m$,Then $a$ is also the generator for cyclic group $(\Bbb Z/n\Bbb Z)^*$
for example when n=4,$2n+1=3^2$, ${1,2,3,4,5,6,7,8,9}$ contian 3 cyclic structures {1,2,4,5,7,8} {3,6} and {9}
the positive integer colletection coprime with 9 is {1,2,4,5,7,8},so we have $\phi(m)=6$, while $2^d\equiv1 (mod9)$ the minimum $d=6$ so 2 is primitive root of modulo 9,using the property of primitive root we can derive that 2 is the generator of cyclic group ${1,2,4,5,7,8}$
considering other strucutres that contain element of form $3^k$, these element must be of form $3^s2^t$ //questions1: why ?
when s=0, the structure is {1,2,4,5,7,8}
when s=1, the structure is {3,6}
when s=2, the structure is {9}
question2: can we call 1,3,9 generators of these cyclic structures as not all of them are cyclic groups, and how to better explain the cyclic structure whithin the perfect shuffle.