1

Many students fail to intuit $x^n−y^n \equiv (x−y)(x^{n−1}+x^{n−2}y+...+xy^{n−2}+y^{n−1})$ , as substantiated by the glut of duplicates. How can students pictorialize it?

After substituting $z = \dfrac xy$, this identity follows from $z^n−1 \equiv (z−1)(z^{n−1}+z^{n−2}+...+z+1)$.

I need to motivate this identity from Michael Spivak, Calculus (4 edn 2008), p. 13, Problem 1(v). But I found no picture proof for this in Roger B. Nelson's Proofs without Words (1993),
Proofs without Words II (2000), or Proofs without Words III (2015)
.

1 Answers1

2

How about using a tabular format to display the result of expanding something of the form $(x - y)z$ as $xz -yz$? Thus: $$ (x−y)(x^{n−1}+x^{n−2}y+{}...{}+xy^{n−2}+y^{n−1}) ={}\\ \\ \begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c@{}} &[(x^n + {}&x^{n-1}y + {}& x^{n-2}y^2 + {}& \ldots + {}&x^2y^{n-2} + {} & xy^{n-1}) & {} - {} &\\ &&(x^{n-1}y {}+{}& x^{n-2}y^2 +{}& \ldots + {} & x^2y^{n-2} + {}& xy^{n-1} + {}& y^n)]&\\ =&x^n + {}&0+{}&0+{}&\ldots+{}&0+{}&0 &{}-y^n&\\ =& x^n - y^n \end{array} $$ That's my picture of how the algebra works.

Rob Arthan
  • 48,577