-4

In this apparent contradiction,

$$\sin(x)=\frac{e^{ix}-e^{-ix}}{2i}=\frac{e^{i \pi \frac{x}{\pi}}-e^{-i \pi \frac{x}{\pi}}}{2i}=\frac{(e^{i \pi})^\frac{x}{\pi}-(e^{-i \pi})^\frac{x}{\pi}}{2i}=\frac{(-1)^\frac{x}{\pi}-(-1)^\frac{x}{\pi}}{2i}=0 \;; x\in \mathbb{R} $$

I believe the fourth equality is correct, while the error lies in the third equality. Unfortunately, I'm unable to provide a clear justification for that. Thank you for your understanding.

DonAntonio
  • 211,718
  • 17
  • 136
  • 287

1 Answers1

1

Thank you for your comments. I have found these results, which I hope may be useful.

The power of power property $(a^b)^c=a^{bc}$ is valid when:

  • $a\in \mathbb{R}^+ \; \; ; \; \; b,c\in\mathbb{R}$
  • For complex numbers the logarithm is multi-valued, so we must use the correct definition of power for complex numbers, which is $$z^c=e^{c \text{Ln}(z)} \; \; ; \; \; z,c\in\mathbb{C}$$ where $$\ln (z)=\text{Ln}(z) + 2\pi i n\; \; ; \; n\in \mathbb{Z}$$ and $\text{Ln}(z)$ is the principal value of $\ln(z)$ Then, $$(a^b)^c=(e^{b\ln a})^c=e^{c\ln(e^{b\ln a})}=e^{c(b\ln a+2\pi i k)}=e^{cb\ln a}e^{2\pi i c k}=a^{bc}e^{2\pi i c k}\; \; ,$$ where $k\in \mathbb{z}$. So the conclusion is that the property $(a^b)^c=a^{bc}$ is valid for $c k \in \mathbb{Z}$, then $c$ must be integer.

Finally, applying this property to our problem: $a=e$ ; $b=i \pi$ ; $c=x/\pi$; then, the third equality is valid for $x/\pi=k$; where $k\in\mathbb{Z}$. We obtain $x=k\pi$, which is consistent with $\sin(x)=\sin(k\pi)=0$.