Determine the number of ways to distribute $33$ distinguishable employees of the corporation to three different projects $A, B, C$ so that:
- each employee is assigned to exactly one of the projects,
- someone is assigned to each project,
- at least $2$ employees are assigned to project $C$.
The question is similar to: Calculating the total number of surjective functions.
However, my main concern in that case is assigning $2$ employees to project $C$ I get some x' that do not cancel out in the final solution. Therefore I don't know how to solve it.
My proposed solution using exponential generating functions:
$$\left(x + \frac{x^2}{2!} + \frac{x^3}{3!} + ... \right)^2 \left( \frac{x^2}{2!} + \frac{x^3}{3!} + ... \right) = \\= \big( e^x - 1 \big)^2 \big(e^x - 1 - x \big) = \\= (e^{2x} - 2e^x + 1)(e^x - 1 - x) = \\= e^{3x} - e^{2x} - xe^{2x} -2e^{2x} + 2e^{x} + 2xe^{x} + e^x - 1 - x = \\= e^{3x} - xe^{2x} - 3e^{2x} + 2xe^x + 3e^x -1 -x$$
- $ \left[ \frac{x^{33}}{33!} \right] \ e^{3x} = \left[ \frac{x^{33}}{33!} \right] 1 + 3x + \frac{(3x)^2}{2!} + ... + \frac{(3x)^{33}}{33!} + ... = 3^{33}$
- $ \left[ \frac{x^{33}}{33!} \right] \ xe^{2x} = \left[ \frac{x^{33}}{33!} \right] x + 2x^2 + \frac{4x^3}{2!} + ... + \frac{2^{32}x^{33}}{32!} + ... = 33 \cdot 2^{32}$
- $ \left[ \frac{x^{33}}{33!} \right] \ 3e^{2x} = \left[ \frac{x^{33}}{33!} \right] 3 + 6x + \frac{12x^2}{2!} + ... + \frac{3 \cdot 2^{33}x^{33}}{33!} + ... = 3 \cdot 2^{33}$
- $ \left[ \frac{x^{33}}{33!} \right] \ 2xe^{x} = \left[ \frac{x^{33}}{33!} \right] 2x + 2x^2 + \frac{2x^3}{2!} + ... + \frac{2 x^{33}}{32!} + ... = 66$
- $ \left[ \frac{x^{33}}{33!} \right] \ 3e^{x} = \left[ \frac{x^{33}}{33!} \right] 3 + 3x + \frac{3x^2}{2!} + ... + \frac{3x^{33}}{33!} + ... = 3$
From that I get (I canceled "$-1 -x$" because those don't provide any coefficients by $x^{33} \ $):
$3^{33} - 33 \cdot 2^{32} - 3 \cdot 2^{33} + 66 + 3 = 3^{33} - 39 \cdot 2^{32} + 69$
Is that correct?