I am reading a real analysis book which in the chapter about sequences asks first to prove that $\lim\limits_{n\to\infty} \frac{\log(n)}{n}=0$ for $a\in\mathbb{R}^+\setminus\{1\}$ and then asks to prove that $\lim\limits_{n\to\infty}\frac{\log_a(n)}{n^b}=0$ for $a\in\mathbb{R}^+\setminus\{1\}$ and $b\in\mathbb{R}^+$ by deducing it from the first result.
I have proved the first result in the following way.
Let $a\in\mathbb{R}^+\setminus\{1\}, a>1$. We first note that $\frac{\log_{a}(n)}{n}=\log_a(\sqrt[n]{n})\geq 0$ for all $n\geq 1$. Now, since $\lim\limits_{n\to\infty}\sqrt[n]{n}=1$ it follows that however we choose $\varepsilon>0$ if we pick some $\delta>0$ such that $a^\varepsilon -1>\delta$ there exists $N\in\mathbb{N}$ such that $1+\delta>\sqrt[n]{n}\geq 1$ for all $n>N$ so, since $\log_a(1+\delta)<\varepsilon\Leftrightarrow 1+\delta<a^\delta\Leftrightarrow \delta<a^\varepsilon -1,$ it follows that $\varepsilon>\log_a(1+\delta)>\log_a(\sqrt[n]{n})\geq\log_a(1)=0$ for all $n>N$. In summary, however we choose $\varepsilon>0$ there exists $N\in\mathbb{N}$ such that $|\log_a(\sqrt[n]{n})-0|<\varepsilon$ for all $n>N$ thus, by definition of limit of a sequence, we have that $\lim\limits_{n\to\infty}\frac{\log_a(n)}{n}=0.$
If $0<a<1$ then $\frac{\log_a(n)}{n}=\frac{\log_{10}(n)}{n}\cdot\frac{1}{\log_{10}(a)}\xrightarrow[]{n\to\infty}0\cdot\frac{1}{\log_{10}(a)}=0.$
I have managed to prove the second result for $b\geq 1$ as follows.
Let $a\in\mathbb{R}^+\setminus\{1\}$ and $b\in\mathbb{R}^+$. We have already proved the claim for $b=1$ so it remains to study the cases $b>1$ and $0<b<1$. If $b>1$ then $\frac{\log_a(n)}{n^b}=\frac{\log_a(n)}{n}\cdot\frac{1}{n^{b-1}}\xrightarrow[]{n\to\infty}0\cdot 0$ since $\lim\limits_{n\to\infty}\frac{\log_a(n)}{n}=0$ and $\lim\limits_{n\to\infty}\frac{1}{n^\gamma}=0$ for $\gamma>0$.
I am finding it difficult to handle the case $0<b<1$ using only the tools given in the corresponding chapter of the book, namely knowledge of the standard limits, the squeeze theorem and the algebra of limits of sequences. By trying the same trick I used in the proof of the case $b>1$ I get $\lim\limits_{n\to\infty}\frac{\log_a(n)}{n^b}=\lim\limits_{n\to\infty}\left(\frac{\log_a(n)}{n}\cdot n^{1-b}\right)=0\cdot\infty$, an indeterminate form. So I would be grateful if someone would give me an hint about how to prove this fact using only the first limit and the tools about limits of sequences that I have mentioned. Thanks.