Finding sum of \begin{align} \sum_{0\leq i<j\leq n}\binom{n}{i} \tag1\\ \sum_{0\leq i<j\leq n}\binom{n}{j} \tag2 \end{align}
For $(1)$, we can write it as \begin{align} \sum_{0\leq i<j\leq n}\binom{n}{i} 1^j &= 1^1\binom{n}{0}+1^2\left[\binom{n}{0}+\binom{n}{1}\right]+1^3\left[\binom{n}{0}+\binom{n}{1}+\binom{n}{2}\right]+\cdots+\left[\binom{n}{0}+\binom{n}{1}+\cdots +\binom{n}{n-1}\right] \\ &=n\binom{n}{0}+(n-1)\binom{n}{1}+(n-2)\binom{n}{2}+\cdots +\binom{n}{n-1} \end{align}
How do I solve it after that?