We can use conditional expectation to transform this probability as follows
$$\begin{align}
L&:=\mathbb{P}\left(E_i \le E_1\frac{U_{(i)}}{U_{(1)}},\forall i\ge2 \right)\\
&=\color{blue}{\frac{1}{2}}\mathbb{P}\left( \left\{ E_i \le E_1\frac{U_{(i)}}{U_{(1)}},\forall i\ge2 \right\} \cap \color{blue}{\underbrace{\left\{E' \le E_1\frac{U_{(1)}}{U_{(1)}} \right\}}_{\text{this is a trick to use the beautiful formula in $(5)$}}} \right )\\
&=\color{blue}{\frac{1}{2}}\mathbb{E}\left(\mathbb{E}\left(\prod_{\color{blue}{1}\le i \le n}\mathbf{1}_{\left\{E_i \le E_1\frac{U_{(i)}}{U_{(1)}}\right\}} |E_i,(U_{(i)})_{2\le i \le n}\right)\right)\\
&=\color{blue}{\frac{1}{2}}\mathbb{E}\left(\prod_{\color{blue}{1}\le i \le n}\mathbb{P}\left(E_i \le E_1\frac{U_{(i)}}{U_{(1)}} |E_i,(U_{(i)})_{2\le i \le n}\right)\right)\\
&=\color{blue}{\frac{1}{2}}\mathbb{E}\left(\prod_{\color{blue}{1}\le i \le n}\left(1-\exp\left(-E_1\frac{U_{(i)}}{U_{(1)}} \right) \right)\right)\\
&=\color{blue}{\frac{1}{2}}\int_{0\le x \le +\infty}\mathbb{E}\left(\prod_{\color{blue}{1}\le i \le n}\left(1-\exp\left(-x\frac{U_{(i)}}{U_{(1)}} \right) \right)\right)e^{-x}dx\\
&=\color{blue}{\frac{1}{2}}\int_{0\le y \le 1}\mathbb{E}\left(\prod_{\color{blue}{1}\le i \le n}\left(1-y^{\frac{U_{(i)}}{U_{(1)}} } \right)\right)dy \tag{1}
\end{align}$$
I doubt we can compute (semi-) analytically $(1)$.
There is a result concerning the distribution of $\left(\frac{U_{(i)}}{ U_{(1)}}\right)_{i=2,...,n}$. From this, we can prove easily that, with $(Z_i)_{i=1,...,n-1}$ iid and following the uniform distribution, we have
$$\frac{U_{(i)}}{ U_{(1)}} \stackrel{\mathcal{D}}{=} Z_1^{-1}\cdot Z_2 ^{-1/2}...Z_{i-1}^{-1/{(i-1)}} \hspace{1cm} \forall i=2,...,n \tag{2}$$
We can use $(2)$, then $(1)$ requires $(n+1)$ integrals for an exact calculation by Monte Carlo simulation for example.
Another approach is to approximate $\left(\frac{U_{(i)}}{ U_{(1)}}\right)_{i=\color{blue}{1},...,n}$ by their expected values. From $(2)$, we can prove easily that
$$\mathbb{E}\left(\frac{U_{(i)}}{ U_{(1)}}\right) = i \hspace{1cm} \forall i=\color{blue}{1},...,n$$
then we assume that
$$\mathbb{E}\left(\prod_{2\le i \le n}\left(1-y^{\frac{U_{(i)}}{U_{(1)}} } \right)\right) \approx \prod_{2\le i \le n}\left(1-y^{\mathbb{E}\left(\frac{U_{(i)}}{U_{(1)}}\right) } \right)=\prod_{2\le i \le +\infty}\left(1-y^{i } \right) \tag{3}$$
Applying $(3)$ to $(1)$, we have
$$L \xrightarrow{n\to+\infty} \frac{1}{2}\int_{0\le y \le 1}\left(\prod_{2\le i \le +\infty}\left(1-y^{i } \right)\right)dy := M\tag{4}$$
The integral $M$ of $(4)$ has closed form expression according to this question
$$\int_0^1\prod_{n=1}^\infty(1-x^n)dx=\frac{4\pi\sqrt3}{\sqrt{23}}\frac{\sinh\frac{\pi\sqrt{23}}3}{\cosh\frac{\pi\sqrt{23}}2}\tag{5}$$
By consequence, we can approximate $L$ by
$$\color{red}{L \approx \frac{1}{2}\frac{4\pi\sqrt3}{\sqrt{23}}\frac{\sinh\frac{\pi\sqrt{23}}3}{\cosh\frac{\pi\sqrt{23}}2}}$$