Here is an argument using Bernoulli's Inequality and the Squeeze Theorem.
Elementary Approach Using Bernoulli's Inequality
For $x\ge1$,
$$
\begin{align}
\left(2a^{1/x}-1\right)^x
&=\left(1+2\left(a^{1/x}-1\right)+\left(a^{1/x}-1\right)^2-\left(a^{1/x}-1\right)^2\right)^x\tag{1a}\\
&=\left(a^{2/x}-\left(a^{1/x}-1\right)^2\right)^x\tag{1b}\\
&=a^2\left(1-\left(1-a^{-1/x}\right)^2\right)^x\tag{1c}\\
&\ge a^2\left(1-x\left(1-a^{-1/x}\right)^2\right)\tag{1d}\\
&=a^2\left(1-x\left(1-(1+(a-1))^{-1/x}\right)^2\right)\tag{1e}\\
&\ge a^2\left(1-x\left(1-\left(1-\frac{a-1}x\right)\right)^2\right)\tag{1f}\\
&=a^2\left(1-\frac{(a-1)^2}x\right)\tag{1g}
\end{align}
$$
Explanation:
$\text{(1a):}$ $2a^{1/x}-1=1+2\left(a^{1/x}-1\right)$ then
$\phantom{\text{(1a):}}$ add and subtract $\left(a^{1/x}-1\right)^2$
$\text{(1b):}$ $1+2\left(a^{1/x}-1\right)+\left(a^{1/x}-1\right)^2=a^{2/x}$
$\text{(1c):}$ factor $a^2$ out front
$\text{(1d):}$ Bernoulli's Inequality (exponent $\ge1$)
$\text{(1e):}$ $a=1+(a-1)$
$\text{(1f):}$ Bernoulli's Inequality (exponent $\le0$)
$\text{(1g):}$ simplify
Using $\text{(1c)}$ and $\text{(1g)}$, we get
$$
a^2\left(1-\frac{(a-1)^2}x\right)\le\left(2a^{1/x}-1\right)^x\le a^2\tag2
$$
Therefore, by the Squeeze Theorem,
$$
\lim_{x\to\infty}\left(2a^{1/x}-1\right)^x=a^2\tag3
$$
Extension to Higher Powers
For $x\ge1$,
$$
\begin{align}
&\left(na^{1/x}-(n-1)\right)^x\\
&=\left(1+n\left(a^{1/x}-1\right)+\sum_{k=2}^n\binom{n}{k}\left(a^{1/x}-1\right)^k-\sum_{k=2}^n\binom{n}{k}\left(a^{1/x}-1\right)^k\right)^x\tag{4a}\\
&=\left(a^{n/x}-\sum_{k=2}^n\binom{n}{k}\left(a^{1/x}-1\right)^k\right)^x\tag{4b}\\
&=a^n\left(1-\sum_{k=2}^n\binom{n}{k}a^{-(n-k)/x}\left(1-a^{-1/x}\right)^k\right)^x\tag{4c}\\
&\ge a^n\left(1-x\sum_{k=2}^n\binom{n}{k}a^{-(n-k)/x}\left(1-a^{-1/x}\right)^k\right)\tag{4d}\\[3pt]
&=a^n\left(1-x\left(1-a^{-n/x}-na^{-(n-1)/x}\left(1-a^{-1/x}\right)\right)\right)\tag{4e}\\[12pt]
&=a^n\left(1-x\left(1-na^{-(n-1)/x}+(n-1)a^{-n/x}\right)\right)\tag{4f}\\[3pt]
&=a^n\left(1-x\left(1-a^{-1/x}\right)^2\sum_{k=1}^{n-1}ka^{-(k-1)/n}\right)\tag{4g}\\
&=a^n\left(1-x\left(1-(1+(a-1))^{-1/x}\right)^2\sum_{k=1}^{n-1}ka^{-(k-1)/n}\right)\tag{4h}\\
&\ge a^n\left(1-x\left(1-\left(1-\frac{a-1}x\right)\right)^2\frac{n^2-n}2\right)\tag{4i}\\
&=a^n\left(1-\frac{(a-1)^2}x\frac{n^2-n}2\right)\tag{4j}
\end{align}
$$
Explanation:
$\text{(4a):}$ $na^{1/x}-(n-1)=1+n\left(a^{1/x}-1\right)$ then
$\phantom{\text{(4a):}}$ add and subtract $\sum\limits_{k=2}^n\binom{n}{k}\left(a^{1/x}-1\right)^k$
$\text{(4b):}$ $1+n\left(a^{1/x}-1\right)+\sum_{k=2}^n\binom{n}{k}\left(a^{1/x}-1\right)^k=a^{n/x}$
$\text{(4c):}$ factor $a^n$ out front
$\text{(4d):}$ Bernoulli's Inequality (exponent $\ge1$)
$\text{(4e):}$ $\sum\limits_{k=0}^n\binom{n}{k}a^{-(n-k)/x}\left(1-a^{-1/x}\right)^k=1$
$\phantom{\text{(4e):}}$ $a^{-n/x}$ is the $k=0$ term
$\phantom{\text{(4e):}}$ $na^{-(n-1)/x}\left(1-a^{-1/x}\right)$ is the $k=1$ term
$\text{(4f):}$ expand the product and collect terms
$\text{(4g):}$ $1-nx^{n-1}+(n-1)x^n=(1-x)^2\sum\limits_{k=1}^{n-1}kx^{k-1}$
$\text{(4h):}$ $a=1+(a-1)$
$\text{(4i):}$ Bernoulli's Inequality (exponent $\le0$)
$\text{(4j):}$ simplify
Using $\text{(4c)}$ and $\text{(4j)}$, we get
$$
a^n\left(1-\frac{(a-1)^2}x\frac{n^2-n}2\right)\le\left(na^{1/x}-(n-1)\right)^x\le a^n\tag5
$$
Therefore, by the Squeeze Theorem,
$$
\lim_{x\to\infty}\left(na^{1/x}-(n-1)\right)^x=a^n\tag6
$$