If we know $gcd(a,b,c)=1$, how to prove that $gcd\left(\frac{a}{gcd\left(a,b\right)},gcd\left(c,\frac{b}{gcd\left(a,b\right)}\right)\right)=1$? Where $a, b, c$ are any positive integers.
I have test two specific examples, looks it is true:
Example 1): Such as when $a=35,b=55,c=77\Longrightarrow\ gcd(35,55,77)=1$, we have $gcd\left(\frac{35}{gcd\left(35,55\right)},gcd\left(77,\frac{55}{gcd\left(35,55\right)}\right)\right)=gcd\left(7,gcd\left(77,11\right)\right)=gcd(7,11)=1$
Example 2): Such as when $a=3,b=5,c=7\Longrightarrow\ gcd(3,5,7)=1$, we have $gcd\left(\frac{3}{gcd\left(3,5\right)},gcd\left(7,\frac{5}{gcd\left(3,5\right)}\right)\right)=gcd\left(3,gcd\left(7,1\right)\right)=gcd(3,1)=1$