-1

If we know $gcd(a,b,c)=1$, how to prove that $gcd\left(\frac{a}{gcd\left(a,b\right)},gcd\left(c,\frac{b}{gcd\left(a,b\right)}\right)\right)=1$? Where $a, b, c$ are any positive integers.

I have test two specific examples, looks it is true:

Example 1): Such as when $a=35,b=55,c=77\Longrightarrow\ gcd(35,55,77)=1$, we have $gcd\left(\frac{35}{gcd\left(35,55\right)},gcd\left(77,\frac{55}{gcd\left(35,55\right)}\right)\right)=gcd\left(7,gcd\left(77,11\right)\right)=gcd(7,11)=1$

Example 2): Such as when $a=3,b=5,c=7\Longrightarrow\ gcd(3,5,7)=1$, we have $gcd\left(\frac{3}{gcd\left(3,5\right)},gcd\left(7,\frac{5}{gcd\left(3,5\right)}\right)\right)=gcd\left(3,gcd\left(7,1\right)\right)=gcd(3,1)=1$

xMath
  • 95

1 Answers1

-1

We are gonna use these two facts: $gcd(x,gcd(y,z)) = gcd(gcd(x,y),z) = gcd(x,y,z)$ and for every positive integer w, $gcd(w*x,w*y) = w*gcd(x,y)$

Let $g = gcd(a,b)$

$g * gcd(a/g,b/g) = gcd(g * a/g,g * b/g) = gcd (a,b) = g$

Cancelling g from both sides, $gcd(a/g,b/g)=1$

Let $k = gcd(a/g , gcd(c , b/g))$

$k = gcd(a/g , gcd(b/g , c)) = gcd( gcd(a/g,b/g), c)) = gcd( 1, c) = 1$