$f: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to M_n(\mathbb{R}) , f(X,Y) = XYX.$
Find $Df(A,B)(X,Y) \forall A,B,X,Y \in M_n(\mathbb{R}).$
My attempt :
$f(X+H, Y+K) - f(X,Y) = (X+H)(Y+K)(X+H)-XYX = XYX + XYH + XKX + XKH +HYX + HKX +HKH -XYX = XYH + XKX + XKH +HYX + HKX +HKH.$
Then $Df(A,B)(X,Y) = XYH + XKX + XKH +HYX + HKX +HKH$ ?
I am not entirly sure , any help is welcome.