The probability of each output from a two-dice roll is:
$$b(2) = \frac{1}{36} \;;\; b(3) = \frac{2}{36} \;;\; b(4) = \frac{3}{36} \;;\; b(5) = \frac{4}{36} \;;\;b(6) = \frac{5}{36}$$
$$b(7) = \frac{6}{36}$$
$$b(8) = \frac{5}{36} \;;\; b(9) = \frac{4}{36} \;;\; b(10) = \frac{3}{36} \;;\; b(11) = \frac{2}{36} \;;\; b(12) = \frac{1}{36}$$
The probability of an integer number $n\geq1$ to be achieved by adding successive two-dice rolls is given by:
$$p(n) = \sum_{i=2}^{12}\left[p(n-i)\,b(i)\right]$$
For $n<1$: $p(0) = 1 \;;\; n<0 \Rightarrow p(n) = 0$.
From this, we can recursively obtain the probability of any integer number to be achieved.
Now, the probability of $r \in \{2,3,4,5,6,7,8,9,10,11,12\}$ being the last roll such that a given value $N$ is achieved of surpassed should be:
$$q(r) = \sum_{j=1}^{r}\left[p(N-j)\,b(r)\right] = b(r)\,\sum_{j=1}^{r} p(N-j)$$
For a given $N$, all the $11$ probabilities $q(r)$ can be computed, which will show that $q(7)$ is the largest value for $N=1000$, so $7$ is the most probable last roll.
In the case that $N$ is large enough, all values from $p(N-12)$ to $p(N-1)$ will be nearly the same (let's call it $P$), so we would have:
$$\sum_{j=1}^{r} p(N-j) \approx r\,P$$
$$q(r) \approx b(r)\,r\,P = \frac{P}{36}\,r\left[6-|r-7|\right]$$
$$\sum_{i=2}^{12} q(i) = 1 \Rightarrow \boxed{P = \frac{1}{7}}$$
Under this assumption, it should be clear that $q(7)$ is the largest value.
I am not sure how to demonstrate that the probabilities converge to the same value, but it makes sense (after a very large number of rolls, how could a number be significantly more probable than any other?) and I have verified it numerically.
[EDIT] : I've just found these demonstrations on math.stackexchange and mathoverflow, so I believe the problem is closed:
In anyway, for the general case, we can see that $q(7) > q(6) > q(5) > q(4) > q(3) > q(2)$, since $b(7) > b(6) > b(5) > b(4) > b(3) > b(2)$ and $\sum\limits_{j=1}^{r+1}p(N-j) \geq \sum\limits_{j=1}^{r}p(N-j)$.
For the other values:
- $q(8)$ could be greater than $q(7)$ only if $5\,p(N-8) > \sum\limits_{j=1}^{7}p(N-j)$
- $q(9)$ could be greater than $q(8)$ only if $4\,p(N-9) > \sum\limits_{j=1}^{8}p(N-j)$
- $q(10)$ could be greater than $q(9)$ only if $3\,p(N-10) > \sum\limits_{j=1}^{9}p(N-j)$
- $q(11)$ could be greater than $q(10)$ only if $2\,p(N-11) > \sum\limits_{j=1}^{10}p(N-j)$
- $q(12)$ could be greater than $q(11)$ only if $p(N-12) > \sum\limits_{j=1}^{11}p(N-j)$
We have to show that, using the definition of $p(n)$, these inequalities cannot hold true when $N$ is large. It is sufficient to show that, for a large $N$:
$$\boxed{5\,p(N-8) < \sum\limits_{j=1}^{7}p(N-j)}$$
I've got the solution through numerical implementation:
- for $N=8$, the most probable last roll is $8$
- for $N=9$, the most probable last roll is $9$
- for $N=10$, the most probable last roll is $10$
- for $N \in \{1,2,3,4,5,6,7,11,12,13,...\}$, the most probable last roll is $7$
For a sufficiently large $N$, the sorted values, from the least probable last roll to the most probable, are: $2 \;;\; 3 \;;\; 4|12 \;;\; 5 \;;\; 11 \;;\; 10|6 \;;\; 9 \;;\; 8 \;;\; 7$.
For $N=1000$, the respective probabilities are:
$0.79\% ;\; 2.38\% ;\; 4.76\% ;\; 4.76\% ;\; 7.94\% ;\; 8.73\% ;\; 11.90\% ;\; 11.90\% ;\; 14.29\% ;\; 15.87\% ;\; 16.67\%$.