I would like to show that : $$\displaystyle\int_0^\infty \frac{x^{\frac\pi5-1}}{1+x^{2\pi}} \mathrm dx=\phi$$ ($\phi$ is golden ratio)
Apparently it comes from a more general form : $$\int_0^\infty \frac{x^{\pi/k-1}}{1+x^{2\pi}}\mathrm dx=\frac{1}{2}\csc\Big( \frac{\pi}{2k}\Big)$$
Indeed for $k=5$ we find the right value, but I couldn't manage to find the solution.
My attempt :
Let $x=u^{\frac{1}{\pi}}$, and $\mathrm{d}x = \frac{1}{\pi} u^{\frac{1}{\pi}-1} \mathrm{d}u$. We have : $$\displaystyle\int_0^\infty \frac{x^{\frac\pi5-1}}{1+x^{2\pi}} \mathrm dx= \frac{1}{\pi} \displaystyle\int_0^\infty \frac{u^{\frac{1}{5\pi}-1}}{1+u^{2}} \mathrm du $$
And then I tried integration by parts but nothing was conclusive. Any idea ?