My solution like this:
Let $\sqrt[n]n-1=\alpha_n$
$\sqrt[n]n\geq1$ so $\alpha_n\geq 0$
For $n\geq2 $
$$n=(1+\alpha_n)^n=1+n\cdot \alpha_n+\frac{n\cdot (n-1)}{2}\cdot\alpha _n^2+\ldots+\alpha _n^n\geq \frac{n\cdot (n-1)}{2}\cdot\alpha _n^2$$
For $n\geq2 $
$n-1\geq \frac{n}{2}$ then $n\geq \dfrac{n^2\cdot\alpha _n^2}{4}$ so that $0\le \alpha_n\leq \dfrac{2}{\sqrt n}$ and $$\lim\limits_{n\to \infty}\alpha_n=0$$
Finally $$\lim\limits_{n\to \infty}\sqrt[n]{n}=\lim\limits_{n\to \infty}(1+\alpha_n)=1$$
Are there any other solutions?