Can someone check my proof? I'm trying to prove this statement:
Let $f : E \rightarrow F$, define $\sigma: \mathcal P(F) \to \mathcal P(F)$ through: $$\sigma(\varepsilon) = \bigcap_{B \supset \varepsilon} B \tag*{(where the Bs are $\sigma$-algebras)}$$ That is, $\sigma(\varepsilon)$ is the smallest $\sigma$-subalgebra of $\mathcal P(F)$ containing $\varepsilon$. Then: $$f^{-1}(\sigma(\varepsilon)) = \sigma(f^{-1}(\varepsilon))$$ That is $\sigma$ commutes with $f^{-1}$.
My attempt: $$f^{-1}(\sigma(\boldsymbol{\varepsilon})) = f^{-1}\left(\bigcap_{B \supset\boldsymbol{\varepsilon} } B \right)= \bigcap_{B \supset \boldsymbol{\varepsilon}} f^{-1}(B)=\sigma(f^{-1}(\boldsymbol{\varepsilon}))$$ Because $f^{-1}(B)$ are $\sigma$-algebras containing $f^{-1}(\boldsymbol{\varepsilon})$. Is this proof valid?