Let $f(x)=\min_{y \in C}\|y-x\|$ where $C$ is a closed set in $\mathbb{R}^n$ and $x,y \in \mathbb{R}^n$.
Show $f(x)$ is a Lipschitz function with constant $L=1$.
My try
I need to show $$ |f(x_2)-f(x_1)| \leq \|x_2-x_1\| \quad \forall x_1,x_2 \in \mathbb{R}^n $$
When $x_1,x_2 \in C$, it is trivial because $f(x_2)=f(x_1)=0$. When one of them is in $C$, let's say $x_1$, then $f(x_1)=0$ and $|f(x_2)-f(x_1)|=\min_{y \in C}\|y-x_2\|\leq \|x_1-x_2\|$ because $x_1 \in C$.
Question
How can I show it when neither $x_1$ nor $x_2$ is in $C$?