2

I found this while trying to solve the other question (that has since been solved) here:Integral $\int_0^\infty\frac{\tanh^2(x)}{x^2}dx$

$$\int_0^\infty \frac{(-i ( x-i)^{2m} (1 + 5(i - x)^2) + i ( x+i)^{2m} (1 + 5(i + x)^2)) (\coth(\pi x) -1)}{2(1 + x^2)^{2m} (1 -2a + a^2 + 2a(1 + a) x^2 + a^2 x^4)} dx\ s.t. m \in \mathbb N, a \in \mathbb R$$

Helpful Information

After some digging, I found it is related to a modified version of the next integral, which looks very familiar. I just can't tell from where... $$2\int_0^\infty \sum_{s=1}^{m}\frac{\sin(2s\arctan(t))}{(1+t^2)^{2s}(e^{2\pi t}-1)a^{s}} dt$$

Also, choosing some $a=5$ and some $m=3$ for example produces polynomial quotient coefficients in place of the complex numbers: $$\int_0^\infty \frac{-2 (-97 + 690 x^2 - 697 x^4 + 100 x^6) (\coth(\pi x) -1)}{(1 + x^2)^6 (16 + 60 x^2 + 25 x^4)}dx$$

1 Answers1

2

For all integer $m\ge 0$ one would use a partial fraction decomposition of the rational polynomial to simplify the kernel. $$ r_m \equiv \frac{-i(x-i)^{2m}[1+5(i-x)^2]+i(x+i)^{2m}[1+5(i+x)^2]}{ 2(1+x^2)^{2m}[(1-a)^2+2a(1+a)x^2+a^2x^4]} $$ and (for short) $p_a(x)\equiv 1-2a+a^2+2a(1+a)x^2+a^2x^4$ like $$ r_0=-\frac{10x}{p_a(x)}, $$ $$ r_1=-\frac{38x}{(1+x^2)^2(4a-1)}+\frac{4x(a-5)}{(1+x^2)(4a-1)^2}-\frac{2xa(2a^2x^2-10ax^2+13a-20-74a^2)}{p_a(x)(4a-1)^2}; $$ $$ r_2=\frac{2x(-156a^2+36a+15+304a^3)}{(1+x^2)^2(4a-1)^3} -\frac{4xa(16a^3-80a^3+3a-15)}{(1+x^2)(4a-1)^4} -\frac{4x(80a-39)}{(1+x^2)^3(4a-1)^2} +\frac{152x}{(1+x^2)^4(4a-1)} +\frac{2xa^2(-30ax^2-160x^2a^3+\cdots)}{p_a(x)(4a-1)^4}. $$ This seems to reduce the problem to sums of integrals of the form $$ I_j\equiv \int_0^\infty \frac{x}{(1+x^2)^j}[\coth(\pi x)-1] = 2\int_0^\infty dx \frac{x}{(1+x^2)^j(e^{2\pi x}-1)} $$ and $$ J_s(a)\equiv \int_0^\infty \frac{x^s}{p_a(x)}[\coth(\pi x)-1],\quad 0\le s\le 3 . $$

$$ \int_0^\infty dx\frac{x}{e^{\mu x}-1} = \frac{\pi^2}{6\mu^2}. $$

By repeated differentiation of the Gradsteyn-Rzyhik formula 3.415.1 w.r.t. $\beta$ all $I_j$ have closed forms in terms of derivatives of the digamma-function: $$ \int_0^\infty dx\frac{x}{(x^2+\beta^2)(e^{\mu x}-1)} = \frac12[\ln \frac{\beta \mu}{2\pi} -\frac{\pi}{\beta \mu}-\psi(\frac{\beta \mu}{2\pi})] . $$

$$ \int_0^\infty dx \frac{x}{(x^2+\beta^2)^2 (e^{\mu x}-1)} = -\frac{1}{4\beta^2} -\frac{\pi}{4\beta^3\mu} +\frac{\mu}{8\beta\pi}\psi'\left(\frac{\beta\mu}{2\pi}\right) . $$

$$ \int_0^\infty dx \frac{x}{(x^2+\beta^2)^3 (e^{\mu x}-1)} = -\frac{1}{8\beta^4} -\frac{3\pi}{16\beta^5\mu} +\frac{\mu}{32\beta^3\pi}\psi'\left(\frac{\beta\mu}{2\pi}\right) -\frac{\mu^2}{64\beta^2\pi^2}\psi''\left(\frac{\beta\mu}{2\pi}\right) . $$

$$ \int_0^\infty dx \frac{x}{(x^2+\beta^2)^4 (e^{\mu x}-1)} = -\frac{1}{12\beta^6} -\frac{5\pi}{32\beta^7\mu} +\frac{\mu}{64\beta^5\pi}\psi'\left(\frac{\beta\mu}{2\pi}\right) -\frac{\mu^2}{128\beta^4\pi^2}\psi''\left(\frac{\beta\mu}{2\pi}\right) +\frac{\mu^3}{768\beta^3\pi^3}\psi'''\left(\frac{\beta\mu}{2\pi}\right) . $$ See https://arxiv.org/abs/2308.14154 for recurrences of these terms for higher exponents than 4 in the denominator of the integral. Here we are only using $\mu=2\pi$, $\beta=1$, such that $\psi(1)=-\gamma$, $\psi'(1)=\pi^2/5$, $\psi''(1) = -2\zeta(3)$, $\psi'''(1)=\pi^4/15$ etc.

To use an equivalent scheme for the $J_s(a)$ one would need to split the biquadratic $p_a(x)$ into factors. I have not looked further into that more complicated part of the problem.

R. J. Mathar
  • 2,324