0

I want to prove the linear independence of the set of n vectors

$$ \begin{pmatrix} 1 \\ \frac{1}{2} \\ \vdots \\ \frac{1}{n}\end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \vdots \\ \frac{1}{n+1}\end{pmatrix}, \cdots, \begin{pmatrix} \frac{1}{n} \\ \frac{1}{n+1} \\ \vdots \\ \frac{1}{2n-1}\end{pmatrix}$$

I am not sure if this statement is true, but it looks very intuitive. I tried writing $$ \alpha_1 \begin{pmatrix} 1 \\ \frac{1}{2} \\ \vdots \\ \frac{1}{n}\end{pmatrix} + \alpha_2 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \vdots \\ \frac{1}{n+1}\end{pmatrix} + \cdots + \alpha_n \begin{pmatrix} \frac{1}{n} \\ \frac{1}{n+1} \\ \vdots \\ \frac{1}{2n-1}\end{pmatrix} = 0$$ and showing $\alpha_i=0$, but the denominators are too messy and I am stuck. A lot of thanks in advance.

David G
  • 98

0 Answers0