Let
$$k=\frac{\pi }{2}-\frac{\sqrt{2\mu} t}{r^{3/2}}\qquad \text{and}\qquad x=r\,y^2$$
The equation becomes
$$k=\sin ^{-1}\left(\sqrt{y^2}\right)-\sqrt{y^2-y^4}\sin ^{-1}\left(\sqrt{y^2}\right)-\sqrt{y^2-y^4}$$
Considering the positive solution
$$k=\sin ^{-1}(y)-y \sqrt{1-y^2}$$
Using Taylor series, the rhs is
$$\sin ^{-1}(y)-y \sqrt{1-y^2}=\sum_{n=1}^\infty a_n\, y^{2n+1}$$ where the first coefficients are
$$ \left\{\frac{2}{3},\frac{1}{5},\frac{3}{28},\frac{5}{72},\frac{35}{
704},\frac{63}{1664},\frac{77}{2560},\frac{429}{17408},\frac{643
5}{311296},\frac{12155}{688128}\right\} $$
but this would require solving very high degree polynomial equations.
But, the simplest Padé approximant
$$ \sin ^{-1}(y)-y \sqrt{1-y^2}\sim \frac{20 y^3}{30-9 y^2}$$ whose error is $\frac{33 y^7}{700}$ reduces, for an approximation, the problem to a cubic equation in $y$
$$20 y^3+ 9k y^2-30 k=0$$ whose discriminant is negative; so, only one real root. For $0 \leq k\leq \frac 12$
$$y=\frac{3}{20} k \left(2 \cosh \left(\frac{1}{3} \cosh
^{-1}\left(\frac{2000}{9 k^2}-1\right)\right)-1\right)$$ is a decent approximation of the solution.
For better, we can use more terms for the Taylor series and then use power series reversion to obtain
$$y=\sum_{n=0}^\infty b_n\, u^{2n+1}\qquad \text{where} \qquad u=\sqrt[3]{ \frac{3k}2}$$ the first coefficients being
$$\left\{1,-\frac{1}{10},-\frac{19}{1400},-\frac{71}{25200},-\frac{17
753}{25872000},-\frac{1312063}{7207200000},-\frac{647915701}{127
13500800000}\right\}$$
A few numbers
$$\left(
\begin{array}{ccc}
k & \text{estimate} &\text{solution} \\
0.1 & 0.515718 & 0.515718 \\
0.2 & 0.637418 & 0.637418 \\
0.3 & 0.717212 & 0.717212 \\
0.4 & 0.776602 & 0.776601 \\
0.5 & 0.823347 & 0.823346 \\
0.6 & 0.861235 & 0.861232 \\
0.7 & 0.892424 & 0.892416 \\
0.8 & 0.918267 & 0.918248 \\
0.9 & 0.939666 & 0.939627 \\
1.0 & 0.957253 & 0.957180\\
1.1 & 0.971482 & 0.971350 \\
1.2 & 0.982685 & 0.982458 \\
1.3 & 0.991109 & 0.990734 \\
1.4 & 0.996938 & 0.996338 \\
\end{array}
\right) $$