This question is related to: Eisenstein sum. Being $q=e^{\pi}$, we have also:
\begin{align*} \sum_{n=1}^{\infty}\frac{n(q^{n}(-1)^{n}+1)}{q^{2n}+2(-1)^{n}q^{n}+1}=-\frac{1}{24}\tag{1}, \end{align*} \begin{align*} \sum_{n=1}^{\infty}\frac{n(q^{n/2}\cos{(\pi n/2)}+1)}{q^{n}+2\cos{(\pi n /2)}q^{n/2}+1}=-\frac{1}{24}.\tag{2} \end{align*} And a lot more of this kind can be obtained. I have no proofs for (1) and (2). Context: If $q=e^{\pi}$ it is known that: \begin{align*} \sum_{n=1}^{\infty}\frac{2n-1}{q^{2n-1}+1}=\sum_{2\nmid n}\frac{n}{q^n+1}=\frac{1}{24}.\tag{3} \end{align*} If $Q=-e^{-\pi}$ we have: \begin{align*} \sum_{2\nmid n}\frac{n}{q^n+1}=-\sum_{2\nmid n}\frac{nQ^n}{1-Q^n}=-\sum_{2\nmid n}\sum_{k=1}^{\infty}nQ^{nk} \\=-\sum_{l=1}^{\infty}\sigma_{1}^{odd}(l)Q^{l}=\sum_{l=1}^{\infty}\left(2\sigma_{1}(l)-\sigma{(2l)} \right)Q^{l}, \end{align*} where $\sigma_{1}$ is the sum divisors function and we have use $\sigma_{1}^{odd}(m)=\sigma_{1}(2m)-2\sigma_{1}(m)$. We know from Poisson's summation formula that: \begin{align*} f(\tau)=\sum_{l=1}^{\infty}\sigma_{1}(l)e^{2\pi i l \tau}\hspace{.3cm}\text{ satisfies } \hspace{.3cm}f(-1/\tau)=\tau^2f(\tau)+\frac{1}{24}-\frac{\tau^2}{24}+\frac{i \tau}{4\pi}.\tag{4} \end{align*} For each $\tau$ in the upper complex semiplane. With this notation $(3)$ is equivalent to: \begin{align*} \sum_{2\nmid n}\frac{n}{q^n+1}=2f(\frac{1+i}{2})-\frac{1}{2}f(\frac{1+i}{4})-\frac{1}{2}f(\frac{i-1}{4}).\tag{5} \end{align*} In this case we don't need the link to theta functions. First taking $\tau=i$ in $(4)$ we have: \begin{align*} f(i)=\frac{1}{24}-\frac{1}{8\pi}.\tag{6} \end{align*} Now setting $\tau=i-1$: \begin{align*} f(\frac{1+i}{2})=f(-\frac{1}{i-1}) \\=(i-1)^2f(i)+\frac{1}{24}-\frac{(i-1)^2}{24}+\frac{i(i-1)}{4\pi} \\=\frac{1}{24}-\frac{1}{4\pi}.\tag{7} \end{align*} For the remaining, setting $\tau=2i\pm2$: \begin{align*} f(\frac{i\mp 1}{4})=\pm 8if(2i)+\frac{1}{24}\mp \frac{i}{3}+\frac{i(2i\pm2)}{4\pi}. \end{align*} And making the sum for boths signs in this last equality: \begin{align*} f(\frac{i+1}{4})+f(\frac{i-1}{4})=\frac{1}{12}-\frac{1}{\pi}.\tag{8} \end{align*} Finally setting $(7)$ and $(8)$ in $(5)$ we get $\frac{1}{24}$.
Question: Can we prove these sums using only the functional equations associated to each one and avoiding the use of theta functions?
Updated: Since Paramanand has solved both sums. Here is the general conjecture:
\begin{align*} \sum_{n=1}^{\infty}\frac{n(e^{\frac{\pi n}{z}}\cos{(\frac{\pi n}{z})}+1)}{e^{\frac{2\pi n}{z}}+2e^{\frac{\pi n}{z}}\cos{(\frac{\pi n}{z})}+1}=-\frac{1}{24},\tag{2.1} \end{align*} when $z \in \mathbb{N}$. For example for $z=10$: \begin{align*} \sum_{n=1}^{\infty}\frac{n(e^{\frac{\pi n}{10}}\cos{(\frac{\pi n}{10})}+1)}{e^{\frac{\pi n}{5}}+2e^{\frac{\pi n}{10}}\cos{(\frac{\pi n}{10})}+1}=-\frac{1}{24}.\tag{2.2} \end{align*} The function is not constant but it has an intringued behaviour.