Easy peasy. Let's rewrite the question so we can see it a little bit more clear.
First of all, observe that if $s\in (0,1)$, then $\sqrt s \in (0,1)$. The cases $s=0,s=1$ are trivial and follow from definition. Therefore
$$\mathbb P\left(\sqrt s |N| > \sqrt{1-s}|N'|\right) = \mathbb P \left(\sqrt s \frac{|N|}{|N'|} > \sqrt{1-s}\right) = \mathbb P \left( \left|\frac{N}{N'}\right| < \frac{\sqrt{1-s}}{\sqrt s}\right)$$
The quotient of two independent random variables distributed as $\mathcal N (0,1)$ is known to be distributed as a Cauchy distribution, I'll denote it by $\mathcal C$,as well as I will denote $\alpha = \frac{\sqrt{1-s}}{\sqrt s}$. So we have
$$Y = \frac{N}{N'} \sim \mathcal C (0,1)$$
So
$$\mathbb P (|Y| < \alpha) = \mathbb P (-\alpha < Y < \alpha) = \mathbb P(Y < \alpha) - \mathbb P(Y < -\alpha)$$
Note: The absolute value of a Cauchy distribution is known as a Folded Cauchy distribution.
It is known that, for a Cauchy distribution $Y \sim \mathcal C(0,1)$ we have that the CDF is
$$\mathbb P(Y < x) = F(x;(0,1)) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}$$
In our case
- $\mathbb P(Y < \alpha) = \frac{1}{\pi} \arctan(\alpha) + \frac{1}{2}$
- $\mathbb P(Y < -\alpha) = \frac{1}{\pi} \arctan(-\alpha) + \frac{1}{2}$
Therefore
$$\mathbb P(|Y| < \alpha) = \frac{1}{\pi} \arctan(\alpha) + \frac{1}{2} - \frac{1}{\pi} \arctan(-\alpha) - \frac{1}{2} = \frac{\arctan(\alpha)-\arctan(-\alpha)}{\pi} $$
Almost there. Now use the trig identities
- $\arctan(x)-\arctan(-x) = 2 \arctan(x)$
- $\arcsin(x) = \arctan \left( \frac{x}{\sqrt{1-x^2}}\right) $ if $x^2 < 1$ [in our case, $x=\sqrt{ 1- s}$]
Therefore
$$\mathbb P(|Y| < \alpha) = \frac{\arctan(\alpha)-\arctan(-\alpha)}{\pi} = \frac{2\arctan(\alpha)}{\pi} = \frac{2\arctan\left(\frac{\sqrt{1-s}}{\sqrt s}\right)}{\pi}$$
$$=\frac{2\arcsin(\sqrt s)}{\pi} $$