0

For example,$ \begin{align} \vec{f} &= \begin{bmatrix} u(x,y) \\ v(x,y) \\ \end{bmatrix} \end{align}$ could be recongnized as $f(z)=u(x,y)+iv(x,y),z \in \mathbb{C}$,In vector calculus:its derivative is$ \begin{align} D\vec{f} &= \begin{bmatrix} u_{x}& u_{y} \\ v_{x}& v_{y} \\ \end{bmatrix} \end{align}$,but in complex analysis,its derivative is:$f^{'}(z)=u_{x}+iv_{x}$.Both are derived from $ \lim_{z \to z_{0}} \frac{f(z)-f(z_{0})}{z-z_{0}}$ .why does it become so different?Do they have some relations?

0 Answers0