Question:
Prove $\int _0^1 f(x)g_n (x) dx \rightarrow 0 $ as $n\rightarrow 0$ for $f\in \mathcal{L}^1([0,1])$ and $\{g_n\}_{n\in\mathbb{N}}$ a sequence of measurable functions on $[0,1]$ such that
(i) $|g_n(x)|\leq C$ a.e. $x\in [0,1]$ for some $C<\infty$, and
(ii) $\lim _{n\rightarrow\infty}\int _0^a g_n(x) dx=0$ for all $a\in [0,1]$.
My progress:
My first step is to show for $f = \phi$ a simple function, the above statement is true. Then by $f\in \mathcal{L}^1([0,1])$, there exists a simple function $\phi$ such that $\int _0^1 |f-\phi| dx < \epsilon$ for $\epsilon >0$. So $|\int _0^1 f(x)g_n (x) dx - \int _0^1 \phi(x)g_n (x) dx|\rightarrow 0 $ as $n\rightarrow 0$.
But there is a question that cannot be avoided, which is I always need to show that $\int _E |f||g_n| dx \rightarrow 0 $ for $E$ measurable and $m(E)<\epsilon$. For this problem, let $F = \{x\in [0,1]: |g_n(x)| > C \}$ and $\lim _{n\rightarrow\infty}m(F) = 0$. Now $\int _E |f||g_n| dx = \int _{E\cap F} |f||g_n| dx + \int _{E\cap F^c} |f||g_n| dx \leq \int _{E\cap F} |f||g_n| dx + \int _{E\cap F^c} C |f|dx $. $\int _{E\cap F^c} C |f|dx $ is less than $\int _{E} C |f|dx $. But for $\int _{E\cap F} |f||g_n| dx$, I am not sure how to formally prove it is not arbitrarily large.
If you have any comments or other way to solve this problem, please let me know. Thank you!