How to show that for a complex number $s$ with $Re (s) > 1$, one has $$\sum_{k=1}^{\infty}\frac1{k^s} = \frac1{\Gamma(s)}\int_{0}^\infty \frac{x^{s-1}}{e^x-1}dx$$
where $\Gamma(z) = \int_0^{+\infty} t^{z-1}\mathrm{e}^{-t}\mathrm{d}t$
For info this is the Riemann zeta function