This is from the MAA review of Baby Rudin (emphasis mine):
Calculus courses in the USA have been transformed from strong mathematical crucibles, in which approximation and geometrical proofs were part and parcel of the subject, into much less rigorous courses taken by all or most incoming freshman science majors. When Rudin wrote this book, calculus courses included epsilon-delta limit arguments and inequalities on the real line alongside related rates, solving differential equations and calculating volumes and areas using standard integral formulas. Looking at the books of the past — such as Lipman Bers’ Calculus and Edwin E. Moise’s Calculus — it’s easy to see why Rudin was the book of choice for analysis courses. It was reasonable to expect that students who did well in such calculus courses would have more then sufficient background to be able to tackle Rudin, despite the effort it would require of even good students.
Today’s students don’t stand a chance — most are simply overwhelmed due to lack of preparation. It’s as simple as that. Unless they’ve had the good fortune and talent to be guided through high school to a good honors calculus course as freshmen — such as those based on Spivak’s Calculus — reading this book is going to be a real struggle, to say nothing of the exercises.
Bers and Moise appear to have been published back in 1966-1967.
What are some other calculus books (let's say before calculus reform in 1987) besides Spivak and Apostol which were considered standard textbooks en route to Rudin?