$$\int_{-2}^{2}\frac{x^2}{e^x+1}~dx$$ Options:
a) $\; 0$
b) $\; \frac{e-2}{e}$
c) $\; \frac{8}{3}$
d) $\; \frac{e-1}{e}$
e) $\; \frac{16}{3}$
Note: It's high school level
What I tried:
$$\int_{-2}^{2}\frac{x^2}{e^x+1}~dx$$ Options:
a) $\; 0$
b) $\; \frac{e-2}{e}$
c) $\; \frac{8}{3}$
d) $\; \frac{e-1}{e}$
e) $\; \frac{16}{3}$
Note: It's high school level
What I tried:
Let $x \mapsto -x$ (this is the same as letting $u = -x $ then renaming $u$ as $x$).
$\displaystyle I = \int_{-2}^{2}\frac{x^2}{e^x+1}~dx = -\int_{2}^{-2}\frac{x^2}{e^{-x}+1}~dx = \int_{-2}^{2}\frac{x^2}{e^{-x}+1}~dx$
Adding the first and last integrals together and using $\frac{1}{y+1}+\frac{1}{y^{-1}+1} = 1$:
$\displaystyle 2I = \int_{-2}^{2}\frac{x^2}{e^x+1}~dx + \int_{-2}^{2}\frac{x^2}{e^{-x}+1}~dx = \int_{-2}^{2} x^2 dx = \frac{16}{3}$
So that $\displaystyle {I = \frac{8}{3}}$.
$$\displaystyle \sum_{k=a}^{b}f(k) = \sum_{k=a}^{b}f(a+b-k)$$
$$\displaystyle \prod_{k=a}^{b}f(k) = \prod_{k=a}^{b}f(a+b-k)$$
– NoName Jul 21 '23 at 03:32