If $u = 2x$, then by the chain rule,
$$
\frac{\mathrm d}{\mathrm dx}f(2x) = f'(2x) \frac{\mathrm d}{\mathrm dx}(2x)
= 2f'(2x) = 2f'(u) = 2 \frac{\mathrm d}{\mathrm du}f(u).\tag1
$$
Another way to write the same application of the chain rule, but substituting $u = 2x$ earlier, is
$$
\frac{\mathrm d}{\mathrm dx}f(2x) = \frac{\mathrm d}{\mathrm dx}f(u)
= \left(\frac{\mathrm d}{\mathrm du}f(u)\right) \frac{\mathrm du}{\mathrm dx}
= 2f'(u) = 2 \frac{\mathrm d}{\mathrm du}f(u).
$$
Now you can also apply the chain rule like this:
$$
\frac{\mathrm d}{\mathrm du}f(u)
= \left(\frac{\mathrm d}{\mathrm dx}f(u)\right) \frac{\mathrm dx}{\mathrm du}
= \frac12 \frac{\mathrm d}{\mathrm dx}f(2x). \tag2
$$
If you use Equation $(2)$ to substitute for $\frac{\mathrm d}{\mathrm du}f(u)$
on the far right-hand side of Equation $(1)$, you will find that
$$
\frac{\mathrm d}{\mathrm dx}f(2x)
= 2 \left(\frac12 \frac{\mathrm d}{\mathrm dx}f(2x)\right)
= \frac{\mathrm d}{\mathrm dx}f(2x),
$$
as you might expect.
What you cannot legitimately do is to write
$$
\frac{\mathrm d}{\mathrm du}f(u)
\stackrel?= \left(\frac{\mathrm d}{\mathrm dx}f(\color{red}{x})\right)
\frac{\mathrm dx}{\mathrm du}.
$$
In general,
$$
\frac{\mathrm d}{\mathrm du}f(u)
= \frac{\mathrm d}{\mathrm dx}f(x)
\neq \frac{\mathrm d}{\mathrm dx}f(u), \text{ where $u = 2x$}.
$$
As mentioned already by others, the fatal flaw in your argument has to do with the Leibniz notation $\frac{\mathrm df}{\mathrm dx}$.
You can get away with this notation when $f$ is actually a variable whose value is determined by $x$. But if $f$ is literally the name of a function, you need to provide a value of that function in the Leibniz notation, for example,
$\frac{\mathrm df(x)}{\mathrm dx}$ or $\frac{\mathrm df(u)}{\mathrm dx}$.
What you did in the question was to write $\frac{\mathrm df}{\mathrm dx}$ in a place where only $\frac{\mathrm df(u)}{\mathrm dx}$ makes sense,
but later you reinterpreted the same value of $\frac{\mathrm df}{\mathrm dx}$
as $\frac{\mathrm df(x)}{\mathrm dx}$.
In other words, you misused the notation $\frac{\mathrm df}{\mathrm dx}$
to silently replace $f(u)$ with $f(x)$. No wonder you derived the incorrect conclusion then that $f(u) = f(x)$.