I wanted to solve $\lim_{n \to \infty }(\frac{n!}{n^n})^{\frac{1}{n}}$ ( I saw many amazing solutions) but I was wondering where was my mistake in solving it
$$L=\lim_{n \to= \infty }(\frac{n!}{n^n})^{\frac{1}{n}}=\lim_{n \to \infty }((\frac{1}{n})(\frac{2}{n})(\frac{3}{n})(\frac{4}{n})(\frac{5}{n})......(\frac{n}{n}))^{\frac{1}{n}}$$ $$L=\lim_{n \to \infty }((1-\frac{1}{n})(1-\frac{2}{n})(1-\frac{3}{n})(1-\frac{4}{n})(1-\frac{5}{n})......(1-\frac{n-1}{n}))^{\frac{1}{n}}$$ $$L=\lim_{n \to \infty }((1-\frac{1}{n})^n(1-\frac{2}{n})^n(1-\frac{3}{n})^n(1-\frac{4}{n})^n(1-\frac{5}{n})^n......(1-\frac{n-1}{n})^n)^{\frac{1}{n^2}}$$ as limit of $(1-\frac{k}{n})^n=e^{-k}$ then $$L=\lim_{n \to \infty}(e^{-1} e^{-2}e^{-3}e^{-4}e^{-5}......e^{-n+1})^{\frac{1}{n^2}}$$ then $$L=\lim_{n \to \infty}(e^{-\frac{n(n-1)}{2n^2}})$$ then $L =e^{-0.5}$ which is wrong but what did I get wrong
it is probably making $\frac{1}{n}=e^{-n+1}$ but they have the same limit as n goes to infinity