I think I figured this out with help from kipf
. The forms of second, fourth, and sixth order isotropic tensors are given here. One can derive the $\mathbf{T}_{2}$ identity from the form of the second-order isotropic tensor
$$\mathbf{T}_{2}=\lambda\mathbf{I}\,,$$
where $\lambda$ is a scalar constant. The constant can be determined by taking the trace of both sides:
$$\int s^{2}\,f(s)\,d\mathbf{s}=\mathrm{Tr}(\lambda\mathbf{I})=3\lambda\,,$$
which gives
$$\lambda=\tfrac{1}{3}\int s^{2}\,f(s)\,d\mathbf{s}\,.$$
Deriving the $\mathbf{T}_{4}:\mathbf{ab}$ identity is similar. The most general form of a fourth-order isotropic tensor is
$$\mathbf{T}_{4}=\lambda\mathbf{\delta}_{ij}\mathbf{\delta}_{km}+\mu\mathbf{\delta}_{ik}\mathbf{\delta}_{jm}+\nu\mathbf{\delta}_{im}\mathbf{\delta}_{jk}\,,$$
where $\mu$ and $\nu$ are additional scalar constants. However, since $\mathbf{T}_{4}$ is symmetric in this case, the form must be invariant under permutation of indices, which means $\lambda=\mu=\nu$. The constant $\lambda$ can determined by taking the trace of both sides twice by setting $j=i$ and summing over $i$, and then setting $m=k$ and summing over $k$, which gives
$$\int s^{4}\,f(s)\,d\mathbf{s}=\lambda\left(\sum_{i=1}^{3}\sum_{k=1}^{3}1+2\mathbf{\delta}_{ik}\right)=\lambda\left(9+2*3\right)=15\lambda\,,$$
and therefore
$$\lambda=\tfrac{1}{15}\int s^{4}\,f(s)\,d\mathbf{s}\,.$$
The double dot product then follows as
$$\left(\mathbf{\delta}_{ij}\mathbf{\delta}_{km}+\mathbf{\delta}_{ik}\mathbf{\delta}_{jm}+\mathbf{\delta}_{im}\mathbf{\delta}_{jk}\right)a_{k}b_{m}=\mathbf{\delta}_{ij}a_{k}b_{k}+a_{i}b_{j}+b_{i}a_{j}=\mathbf{I}(\mathbf{a}\cdot\mathbf{b})+\mathbf{ab}+\mathbf{ba}\,.$$
Combining everything gives the $\mathbf{T}_{4}:\mathbf{ab}$ identity from Davis above.
Deriving the $\mathbf{T}_{6}::\mathbf{abcd}$ identity is more tedious because the form of a symmetric sixth-order isotropic tensor has 15 linearly independent terms:
$$\mathbf{T}_{6} = \lambda\left(\mathbf{\delta}_{ij}\mathbf{\delta}_{km}\mathbf{\delta}_{pq}+\mathbf{\delta}_{ij}\mathbf{\delta}_{kp}\mathbf{\delta}_{mq}+\mathbf{\delta}_{ij}\mathbf{\delta}_{kq}\mathbf{\delta}_{mp}+\mathbf{\delta}_{ik}\mathbf{\delta}_{jm}\mathbf{\delta}_{pq}+\mathbf{\delta}_{ik}\mathbf{\delta}_{jp}\mathbf{\delta}_{mq}\right.$$
$$+\mathbf{\delta}_{ik}\mathbf{\delta}_{jq}\mathbf{\delta}_{mp}+\mathbf{\delta}_{im}\mathbf{\delta}_{jk}\mathbf{\delta}_{pq}+\mathbf{\delta}_{im}\mathbf{\delta}_{jp}\mathbf{\delta}_{kq}+\mathbf{\delta}_{im}\mathbf{\delta}_{jq}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ip}\mathbf{\delta}_{jk}\mathbf{\delta}_{mq}$$
$$\left.+\mathbf{\delta}_{ip}\mathbf{\delta}_{jm}\mathbf{\delta}_{kq}+\mathbf{\delta}_{ip}\mathbf{\delta}_{jq}\mathbf{\delta}_{km}+\mathbf{\delta}_{iq}\mathbf{\delta}_{jk}\mathbf{\delta}_{mp}+\mathbf{\delta}_{iq}\mathbf{\delta}_{jm}\mathbf{\delta}_{kp}+\mathbf{\delta}_{iq}\mathbf{\delta}_{jp}\mathbf{\delta}_{km}\right)\,.$$
The constant $\lambda$ can determined by taking the trace of both sides three times by setting $j=i$ and summing over $i$, and then setting $m=k$ and summing over $k$, and setting $q=p$ and summing over $p$ which gives
$$\int s^{6}\,f(s)\,d\mathbf{s} = \lambda\sum_{i=1}^{3}\sum_{k=1}^{3}\sum_{p=1}^{3}\left(\mathbf{\delta}_{ii}\mathbf{\delta}_{kk}\mathbf{\delta}_{pp}+\mathbf{\delta}_{ii}\mathbf{\delta}_{kp}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ii}\mathbf{\delta}_{kp}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ik}\mathbf{\delta}_{ik}\mathbf{\delta}_{pp}+\mathbf{\delta}_{ik}\mathbf{\delta}_{ip}\mathbf{\delta}_{kp}\right.$$
$$+\mathbf{\delta}_{ik}\mathbf{\delta}_{ip}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ik}\mathbf{\delta}_{ik}\mathbf{\delta}_{pp}+\mathbf{\delta}_{ik}\mathbf{\delta}_{ip}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ik}\mathbf{\delta}_{ip}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ip}\mathbf{\delta}_{ik}\mathbf{\delta}_{kp}$$
$$\left.+\mathbf{\delta}_{ip}\mathbf{\delta}_{ik}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ip}\mathbf{\delta}_{ip}\mathbf{\delta}_{kk}+\mathbf{\delta}_{ip}\mathbf{\delta}_{ik}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ip}\mathbf{\delta}_{ik}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ip}\mathbf{\delta}_{ip}\mathbf{\delta}_{kk}\right)\,.$$
Simplifying gives
$$\int s^{6}\,f(s)\,d\mathbf{s}=\lambda\sum_{i=1}^{3}\sum_{k=1}^{3}\sum_{p=1}^{3}\left(1+2\mathbf{\delta}_{kp}+2\mathbf{\delta}_{ik}+2\mathbf{\delta}_{ip}+8\mathbf{\delta}_{ik}\mathbf{\delta}_{ip}\mathbf{\delta}_{kp}\right)=\lambda\left(27+6*9+8*3\right)=105\lambda\,.$$
The quadruple dot produce is evaluated as
$$\mathbf{T}_{6}::\mathbf{abcd} = \lambda\left(\mathbf{\delta}_{ij}\mathbf{\delta}_{km}\mathbf{\delta}_{pq}+\mathbf{\delta}_{ij}\mathbf{\delta}_{kp}\mathbf{\delta}_{mq}+\mathbf{\delta}_{ij}\mathbf{\delta}_{kq}\mathbf{\delta}_{mp}+\mathbf{\delta}_{ik}\mathbf{\delta}_{jm}\mathbf{\delta}_{pq}+\mathbf{\delta}_{ik}\mathbf{\delta}_{jp}\mathbf{\delta}_{mq}\right.$$
$$+\mathbf{\delta}_{ik}\mathbf{\delta}_{jq}\mathbf{\delta}_{mp}+\mathbf{\delta}_{im}\mathbf{\delta}_{jk}\mathbf{\delta}_{pq}+\mathbf{\delta}_{im}\mathbf{\delta}_{jp}\mathbf{\delta}_{kq}+\mathbf{\delta}_{im}\mathbf{\delta}_{jq}\mathbf{\delta}_{kp}+\mathbf{\delta}_{ip}\mathbf{\delta}_{jk}\mathbf{\delta}_{mq}$$
$$\left.+\mathbf{\delta}_{ip}\mathbf{\delta}_{jm}\mathbf{\delta}_{kq}+\mathbf{\delta}_{ip}\mathbf{\delta}_{jq}\mathbf{\delta}_{km}+\mathbf{\delta}_{iq}\mathbf{\delta}_{jk}\mathbf{\delta}_{mp}+\mathbf{\delta}_{iq}\mathbf{\delta}_{jm}\mathbf{\delta}_{kp}+\mathbf{\delta}_{iq}\mathbf{\delta}_{jp}\mathbf{\delta}_{km}\right)a_{k}b_{m}c_{p}d_{q}\,.$$
Simplifying gives
$$\mathbf{T}_{6}::\mathbf{abcd} = \lambda\left(\mathbf{\delta}_{ij}a_{k}b_{k}c_{p}d_{p}+\mathbf{\delta}_{ij}a_{k}b_{m}c_{k}d_{m}+\mathbf{\delta}_{ij}a_{k}b_{m}c_{m}d_{k}+a_{i}b_{j}c_{p}d_{p}+a_{i}b_{m}c_{j}d_{m}\right.$$
$$+a_{i}b_{m}c_{m}d_{j}+a_{j}b_{i}c_{p}d_{p}+a_{k}b_{i}c_{j}d_{k}+a_{k}b_{i}c_{k}d_{j}+a_{j}b_{m}c_{i}d_{m}$$
$$\left.+a_{k}b_{j}c_{i}d_{k}+a_{k}b_{k}c_{i}d_{j}+a_{j}b_{m}c_{m}d_{i}+a_{k}b_{j}c_{k}d_{i}+a_{k}b_{k}c_{j}d_{i}\right)\,.$$
Putting everything together shows
$$\mathbf{T}_{6}::\mathbf{abcd} =$$ $$\tfrac{1}{105}\int s^{6}\,f(s)\,d\mathbf{s}\left[\mathbf{I}(\mathbf{a}\cdot\mathbf{b})(\mathbf{c}\cdot\mathbf{d})+\mathbf{I}(\mathbf{a}\cdot\mathbf{c})(\mathbf{b}\cdot\mathbf{d})+\mathbf{I}(\mathbf{a}\cdot\mathbf{d})(\mathbf{b}\cdot\mathbf{c})+\mathbf{ab}(\mathbf{c}\cdot\mathbf{d})+\mathbf{ac}(\mathbf{b}\cdot\mathbf{d})\right.$$
$$+\mathbf{ad}(\mathbf{b}\cdot\mathbf{c})+\mathbf{ba}(\mathbf{c}\cdot\mathbf{d})+\mathbf{bc}(\mathbf{a}\cdot\mathbf{d})+\mathbf{bd}(\mathbf{a}\cdot\mathbf{c})+\mathbf{ca}(\mathbf{b}\cdot\mathbf{d})$$
$$\left.+\mathbf{cb}(\mathbf{a}\cdot\mathbf{d})+\mathbf{cd}(\mathbf{a}\cdot\mathbf{b})+\mathbf{da}(\mathbf{b}\cdot\mathbf{c})+\mathbf{db}(\mathbf{a}\cdot\mathbf{c})+\mathbf{dc}(\mathbf{a}\cdot\mathbf{b})\right]\,.$$