Let $a,b,c\ge 0: ab+bc+ca>0$ and $a+b+c+abc=4.$ Prove$$\sqrt{\frac{ab+9}{ab+9c}}+\sqrt{\frac{bc+9}{bc+9a}}+\sqrt{\frac{ca+9}{ca+9b}}\ge 3.$$
I tried to used AM-GM as follow:$$LHS\ge 3\sqrt[6]{\frac{(ab+9)(bc+9)(ca+9)}{(ab+9c)(bc+9a)(ca+9b)}},$$and we need to prove $(ab+9)(bc+9)(ca+9)\ge (ab+9c)(bc+9a)(ca+9b)$ but it is wrong when $a=b=2;c=0.$
Also by AM-GM$$\sum_{cyc}\sqrt{\frac{ab+9}{ab+9c}}=\sum_{cyc}\frac{ab+9}{\sqrt{(ab+9)(ab+9c)}}\ge 2\sum_{cyc}\frac{ab+9}{2ab+9c+9},$$and we need to prove $\sum_{cyc}\dfrac{ab+9}{2ab+9c+9}\ge \dfrac{3}{2},$ which is also wrong when $a=b=2;c=0.$
I think we can use Holder as$$\left(\sum_{cyc}\sqrt{\frac{ab+9}{ab+9c}}\right)^2.\sum_{cyc}(ab+9c)(ab+9)^2(kc+a+b)^3\ge \left(\sum_{cyc}(kc+a+b)(ab+9)\right)^3 .$$The last inequality is $$\left(\sum_{cyc}(kc+a+b)(ab+9)\right)^3 \ge 9\sum_{cyc}(ab+9c)(ab+9)^2(kc+a+b)^3.$$I check $k=0$ which is not good enough.
Does mixing variables method work? I hope you can help me prove this inequality. Thank you very much.