The question is:
Prove the below limit statement:
$\displaystyle\lim_{x \to 9} \sqrt{x-5} = 2$
From my understanding of the textbook (Thomas' Calculus), the proof is done in 3 steps:
- Write both the $\epsilon$ and $\delta$ inequalities.
- Simplify the $|f(x)-L|<\epsilon$ inequality to the form $0<|x-c|<k\epsilon$, where k is a real number. Set $\delta$ in terms of $\epsilon$
- Substitute the new $\delta$ inequality in $|f(x)-L|$ to get back the original $\epsilon$ inequality.
(I can include an example of this method from the textbook ($\lim_{x \to 1} \left(5x-3\right)=2$) to demonstrate this method if necessary.)
I tried to follow the same steps with the above mentioned question, but I am unable to perform step 4 as $\delta$ is a minimum of two deltas. Below is my working for reference:
Step 1: $0<|x-9|<\delta$ and $|f(x)-2|<\epsilon$, where $f(x)=\sqrt{x-5}$
Step 2:
$\Rightarrow |\sqrt{x-5}-2|<\epsilon$
$\Rightarrow -\epsilon+2 < \sqrt{x-5} < \epsilon+2$ (adding $-2$ and removing modulus)
$\Rightarrow \left(2-\epsilon\right)^{2} < x-5 < \left(2+\epsilon\right)^{2}$
$\Rightarrow \left(2-\epsilon\right)^{2} + 5 < x < \left(2+\epsilon\right)^{2} + 5$ [1]
Now, the delta inequality states $0<|x-9|<\delta\ \Rightarrow -\delta < x-9 < \delta$
$\Rightarrow -\delta+9 < x < \delta+9$ [2]
Equating [1]
and [2]
,
LHS | RHS |
---|---|
$\Rightarrow -\delta+9 = \left(2-\epsilon\right)^{2} + 5$ | $\Rightarrow \delta+9 = \left(2+\epsilon\right)^{2} + 5$ |
$\Rightarrow -\delta+9 = 4+\epsilon^2-4\epsilon+5$ | $\Rightarrow \delta+9 = 4+\epsilon^2+4\epsilon+5$ |
$\Rightarrow -\delta = \epsilon^2 - 4\epsilon$ | $\Rightarrow \delta = \epsilon^2 + 4\epsilon$ |
$\Rightarrow \delta = 4\epsilon - \epsilon^2$ | $\Rightarrow \delta = 4\epsilon + \epsilon^2$ |
Hence, $\delta = \min\left(4\epsilon - \epsilon^2, 4\epsilon + \epsilon^2\right) = 4\epsilon - \epsilon^2$
Now, proceeding to step 4 yields weird results:
Now $0<|x-9|<(4\epsilon - \epsilon^2)$
$-4\epsilon + \epsilon^2<x-9<(4\epsilon - \epsilon^2)$
$-4\epsilon + \epsilon^2 + 9<x<4\epsilon - \epsilon^2 + 9$
$\epsilon^2 - 4\epsilon + 4 < x-5 < -\epsilon^2 + 4\epsilon + 4$
On completing the square and taking square root...
$\epsilon-2<\sqrt{x-5}<\sqrt{8-\left(\epsilon-2\right)^2}$.
I want to reach back to this inequality: $|\sqrt{x-5} - 2|<\epsilon$.
What am I doing wrong here? Is this step 4 even necessary? (Step 4 is not done in many questions across MSE and other sites, however all examples in Thomas' Calculus perform it.)