Question
Let $f:[1,\infty)\to \mathbb{R}$ s.t:
- $f\in C^{1}$
- $f(x)\ge 0$
- $\forall x<y:f(y)\le f(x)$ , $x\ne y \in [1,\infty) $
- $\lim_{x\to \infty} xf(x)=L\in (0,\infty)$
Prove $\int_{1}^{\infty}f(x) \cos{x} \ dx < \infty $ and $\int_{1}^{\infty} \left| f(x) \cos{x} \right| \ dx $ diverges.
I want to show $\lim_{x\to \infty }f(x)=0$ because then I can prove $\int_{1}^{\infty}f(x) \cos{x} \ dx < \infty $ by Dirichlet's test for convergence of improper integral. As for $\int_{1}^{\infty} \left| f(x) \cos{x} \right| \ dx $ I have not idea where to begin. I would appreciate guidance/answer.
Thank you in advance!
EDIT
- I see now why $\lim_{x\to \infty }f(x)=0$.
I thought using $\lim_{x\to \infty} xf(x)=L\in (0,\infty)$ and say $0<\frac{L}{2}<xf(x)$ for sufficiently large $x$. Then multiply it by $|\cos{x}|$ and devide by $x$.
– Lior Jul 10 '23 at 15:17