$\newcommand{\Ti}{\operatorname{Ti}}$Considering the integral
$$\int_{0}^{\frac{1}{\sqrt{3}}}\frac{\arctan(x)}{1-x^2}\,dx$$
Here is my work, I want a fact check form my fellow MSE users since wolfram doesn’t give a closed form for the answer.
$$I=\int_{0}^{\frac{1}{\sqrt{3}}}\frac{\arctan(x)}{1-x^2}\,dx$$
IBP yields
$$I=\frac{\pi}{12}\log(2+\sqrt{3})-\frac{1}{2}\int_{0}^{\frac{1}{\sqrt{3}}}\frac{\log(\frac{1+x}{1-x})}{x^2+1}\,dx$$
Now let $$x\longrightarrow{\frac{1-x}{1+x}}$$
$$I=\frac{\pi}{12}\log(2+\sqrt{3})+\frac{1}{2}\int_{2-\sqrt{3}}^{1}\frac{\log(x)}{x^2+1}\,dx$$
$$I=\frac{\pi}{12}\log(2+\sqrt{3})+\frac{1}{2}I_{1}$$
Now to evaluate
$$I_{1}=\int_{2-\sqrt{3}}^{1}\frac{\log(x)}{x^2+1}\,dx$$
$$I_{1}=\int_{2-\sqrt{3}}^{1}\log(x)\sum_{n=0}^{\infty}(-1)^nx^{2n}\,dx$$
swapping operators on an interval of convergence gives
$$I_{1}=\sum_{n=0}^{\infty}(-1)^n\int_{2-\sqrt{3}}^{1}x^{2n}\log(x)\,dx$$
IBP yields
$$I_{1}=\sum_{n=0}^{\infty}(-1)^n[-\frac{(2-\sqrt{3})^{2n+1}}{2n+1}\log(2-\sqrt{3})-\frac{1}{(2n+1)^2}+\frac{(2-\sqrt{3})^{2n+1}}{(2n+1)^2}]$$
All of these are standard sums and with simplification the sum evaluates to
$$I_{1}=\frac{\pi}{12}\log(2+\sqrt{3})-G+\Ti_{2}(2-\sqrt{3})$$
Pluggin this value back into I we get the final result:
$$\int_{0}^{\frac{1}{\sqrt{3}}}\frac{\arctan(x)}{1-x^2}\,dx=\frac{\pi}{8}\log(2+\sqrt{3})-\frac{1}{2}G+\frac{1}{2}\Ti_{2}(2-\sqrt{3})$$
Where $G$ denotes Catalan’s constant, and $\Ti_{2}(x)$ denotes the inverse tangent integral
Is this right? Also, do any of you have a different solution method? I would be delighted to see!