Is it possible to solve the Poisson's equation with the Fourier transform?
Let \begin{align} -\partial_x^2 u(x)=f(x),\quad x\in\mathbb{R} \end{align} then $u(x)=\mathcal{F}^{-1}\left( \frac{1}{\xi^2}\widehat{f}(\xi)\right)$?
Is it possible to solve the Poisson's equation with the Fourier transform?
Let \begin{align} -\partial_x^2 u(x)=f(x),\quad x\in\mathbb{R} \end{align} then $u(x)=\mathcal{F}^{-1}\left( \frac{1}{\xi^2}\widehat{f}(\xi)\right)$?