Consider $f:[1,\infty)\to \mathbb{R}$ of class $C^1$ such that $ \int_{1}^{+\infty} |f'(x)| dx $ is finite. Prove that $I = \int_{1}^{+\infty} f(x) dx $ exist iff exist $\lim_{n \to +\infty} \int_{1}^{n} f(x) dx$ ($n$ is an integer).
I know for hypothesis that $ \int_{1}^{+\infty} f'(x) dx = \lim_{x \to +\infty} f(x) - f(1)$ is finite so $L = \lim_{x \to +\infty} f(x)$ is finite. Now $L > 0 \to \int_{1}^{+\infty} f(x) dx = +\infty$ and $L < 0 \to \int_{1}^{+\infty} f(x) dx = -\infty$ but I don't know how to continue