When I met the result in the post that
$$ \boxed{\lim _{n \rightarrow \infty}\prod_{k=1}^n\left(1+\frac{k}{n^2}\right) =\sqrt{e}}, $$
I appreciated very much the application of $G.M.\leq A.M.$ in the answer and modified the solution as below: $$ P_n^2=\prod_{k=0}^n\left[1+\frac{1}{n}+\frac{k(n-k)}{n^4}\right] $$ Using $G.M.\leq A.M.$, we have
$$ 0 \leqslant k(n-k) \leqslant \frac{n^2}{4} $$ Plugging back yields
$$ \left(1+\frac{1}{n}\right)^n \leqslant p_n^2 \leqslant \prod_{k=0}^n\left(1+\frac{1}{n}+\frac{1}{4 n^2}\right)=\left(1+\frac{1}{2 n}\right)^{2 n} $$
Since $$ \lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{2 n}=e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^n, $$ By Squeezing Theorem, we conclude that
$$ \lim _{n \rightarrow \infty} \prod_{k=1}^n\left(1+\frac{k}{n^2}\right)=\sqrt{e} $$
I then tried to investigate the limit $$ \lim _{n \rightarrow \infty} \prod_{k=1}^n\left(1+\frac{1}{n}+\frac{k}{n^2}\right) $$ by the same technique.
Let the product be $Q_n$. Firstly we are going to find similarly the upper bound of $Q_n^2$ in terms of $n$. $$\displaystyle \begin{aligned}Q_n^2 & =\prod_{k=1}^n\left[\left(1+\frac{1}{n}\right)^2+\left(1+\frac{1}{n}\right) \frac{1}{n}+\frac{k(n-k)}{n^4}\right]\end{aligned}\tag*{} $$
For the last terms, using $G.M.\leq A.M.$ again, we have $\displaystyle 0\leq k(n-k) \leqslant \frac{n^2}{4}\tag*{} $
Then plugging back yields $$\displaystyle \begin{aligned}Q_n^2 & \leqslant \prod_{k=1}^n\left[\left(1+\frac{1}{n}\right)^2+\left(1+\frac{1}{n}\right) \frac{1}{n}+\frac{1}{4 n^2}\right] \\& =\prod_{k=1}^n\left(1+\frac{1}{n}+\frac{1}{2 n}\right)^2 \\& =\prod_{k=1}^n\left(1+\frac{3}{2 n}\right)^2\\&=\left(1+\frac{3}{2 n}\right)^{2 n} \end{aligned}\tag*{} $$
Next we are going to find the lower bound of $Q_n^2$ in terms of $n$. $$\displaystyle Q_n^2\geqslant \prod_{k=1}^n\left[\left(1+\frac{1}{n}\right)^2+\left(1+\frac{1}{n}\right) \frac{1}{n}\right]= \prod_{k=1}^n \left[\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\right]\\=\left(1+\frac{1}{n}\right)^n\left(1+\frac{2}{n}\right)^n\tag*{} $$
Now we can find the limits of the bounds of $Q_n^2$ as $n$ tends to $\infty$. $$\displaystyle \lim _{n \rightarrow \infty}\left(1+\frac{3}{2 n}\right)^{2n}=\left[\lim _{n \rightarrow \infty}\left(1+\frac{1}{\frac{2 n}{3}}\right)^{\frac{2 n}{3}}\right]^{3}=e^3\tag*{} $$ and $$\displaystyle \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^n\left(1+\frac{2}{n}\right)^n=e \cdot e^2=e^3\tag*{} $$ By the Squeeze Theorem, $\displaystyle \lim _{n \rightarrow \infty} Q_n^2=e^3\tag*{} $ Hence we can conclude that $\displaystyle \boxed{\lim _{n \rightarrow \infty} \prod_{k=1}^n\left(1+\frac{1}{n}+\frac{k}{n^2}\right)=e^{\frac{3}{2}}\,} \tag*{} $
I am curious about what happens when both the number of terms and the power of $n$ in the product increase. I started to investigate the limit and surprisingly found that
$$\boxed{\lim _{n \rightarrow \infty} \prod_{k=1}^n\left(1+\frac{1}{n}+\frac{1}{n^2}+\cdots +\frac{1}{n^{m-1}} +\frac{k}{n^m}\right)=e\,}$$ where $m\ge 3$. How to prove it?
Let $$R_n=\prod_{k=1}^n\left(1+\frac{1}{n}+\frac{1}{n^2}+\cdots +\frac{1}{n^{m-1}} +\frac{k}{n^m}\right)$$ and $$ A=1+\frac{1}{n}+\frac{1}{n^2}+\ldots+\frac{1}{n^{m-1}} $$ Then $$R_n^2 =\prod_{k=1}^n\left[\left(A+\frac{k}{n^m}\right)\left(A+\frac{n-k}{n^m}\right) \right] =\prod_{k=1}^n\left[A^2+\frac{A}{n^{m-1}}+\frac{k( n-k)}{n^{2m}}\right] $$ Using $ 0 \leqslant k(n-k) \leqslant \frac{n^2}{4}, $ we have
$$ A^n\left(A+\frac{1}{n^{m-1}}\right)^n \leqslant R_n^2 \leqslant \prod_{k=1}^n\left(A+\frac{1}{2 n^{m-1}}\right)^2=\left(A+\frac{1}{2 n^{m-1}}\right)^{2 n} $$ Then we finish the proof if we can prove that
$$ \lim _{n \rightarrow \infty} A^n\left(A+\frac{1}{n^{m-1}}\right)^n=e^2= \lim _{n \rightarrow \infty}\left(A+\frac{1}{2 n^{m-1}}\right)^{2 n} $$
My attempt:
$$\left(1+\frac{1}{n}\right)^n \leqslant A^n=\left(1+\frac{1}{n}+\frac{1}{n^2}+\ldots+\frac{1}{n^{m-1}}\right)^n \leqslant\left(\frac{1}{1-\frac{1}{n}}\right)^n \Rightarrow \lim _{n \rightarrow \infty} A^n=e $$ My Question: How to prove that $$ \lim _{n \rightarrow \infty}\left(A+\frac{1}{n^{m-1}}\right)^n=\lim _{n \rightarrow \infty}\left(A+\frac{1}{2 n^{m-1}}\right)^n=e? $$