Let $G$ and $\overline G$ be groups, and $f\colon G\to\overline G$ a bijection. Then: $$\forall g,h\in G: f(gh) = f(g)f(h) \tag1$$ if and only if: $$\mathfrak c=\psi_f\bar{\mathfrak c}f \tag2$$ where $\mathfrak c$ and $\bar{\mathfrak c}$ are Cayley's embedding of $G$ and $\overline G$ into $\operatorname{Sym}(G)$ and $\operatorname{Sym}(\overline G)$, respectively, and $\psi_f\colon\operatorname{Sym}(\overline G)\to\operatorname{Sym}(G)$ is defined by $\sigma\mapsto f^{-1}\sigma f$.
Question. Is there any weaker (than $(1)$) condition on the bijection $f$, which ensures the weaker (than $(2)$) result: $$\operatorname{im}(\mathfrak c)=\operatorname{im}(\psi_f\bar{\mathfrak c}f) \tag3$$ (here "$\operatorname{im}(\_)$" stands for "the image of")?
Motivation. Intuitively, I'd expect $(3)$ being sufficient to get $G$ and $\overline G$ "somehow isomorphic".