Numerical integration suggests that $$\mathcal U=\int_0^\pi\int_0^\pi\int_0^\pi\arccos\left(\cos x\cdot\cos y+\sin x\cdot\sin y\cdot\cos z\right) dx dy dz\stackrel{\small\color{gray}?}=\frac{\pi^4}2\tag1$$ (note that the function being integrated represents the great-circle distance$^{[1]}$$\!^{[2]}$$\!^{[3]}$ in spherical coordinates).
How can we prove it?
Is it possible to find a closed form for this one? $$\mathcal W=\int_0^{\tfrac\pi2}\!\int_0^\pi\int_0^\pi\arccos\left(\cos x\cdot\cos y+\sin x\cdot\sin y\cdot\cos z\right) dx dy dz\tag2$$