1

$$I=\int_0^1\sin(\pi \sqrt{-\ln x})\mathrm~ dx$$

My efforts:

I substitute $t=-\ln x$

And I got $$I=\int_0^\infty e^{-t}\sin(\pi \sqrt{t})\mathrm ~dt$$

But, how to proceed with : $\int_0^\infty e^{-t}\sin(\pi\sqrt{t})\mathrm dt$?

(P.S.: The result is $\dfrac{\pi^{3/2}}{2e^{\pi^2/4}}$)

MathFail
  • 21,128

1 Answers1

0

Let $t=\sqrt{-\ln x}$, hence $x=e^{-t^2}$. Integration by part, and we get

$$I=\int_\infty^0\sin(\pi t)~d(e^{-t^2})=\sin(\pi t)~d(e^{-t^2})\bigg|_\infty^0-\pi\int_\infty^0\cos(\pi t)\cdot e^{-t^2}dt=\pi\int^\infty_0\cos(\pi t)\cdot e^{-t^2}dt$$

This is a Gaussian-like integral and can be solved by many ways

$$\int_0^\infty \cos(ax)\cdot e^{-x^2}~dx=\frac{\sqrt\pi}{2}\,e^{-a^2/4}$$

therefore,

$$\boxed{\int_0^1\sin(\pi \sqrt{-\ln x})\mathrm~ dx=\frac{\pi\sqrt\pi}{2}\,e^{-\pi^2/4}}$$

MathFail
  • 21,128