$$I=\int_0^1\sin(\pi \sqrt{-\ln x})\mathrm~ dx$$
My efforts:
I substitute $t=-\ln x$
And I got $$I=\int_0^\infty e^{-t}\sin(\pi \sqrt{t})\mathrm ~dt$$
But, how to proceed with : $\int_0^\infty e^{-t}\sin(\pi\sqrt{t})\mathrm dt$?
(P.S.: The result is $\dfrac{\pi^{3/2}}{2e^{\pi^2/4}}$)