Given $T: (C[0,1], \|\cdot\|_1) \to (l^\infty,\|\cdot\|_\infty)$ where $(Tf)_n = \int_0^1 x^nf(x)dx$, find $\|T\|$.
I've shown that $$\|Tf\|_\infty =\sup_{n \in \mathbb{N}}\left|\int_0^1 x^nf(x)dx\right| \le\sup_{n \in \mathbb{N}} \int_0^1x^n|f(x)|dx \le\sup_{n \in \mathbb{N}}\int_0^1 |f(x)|dx =\|f\|_1.$$
If what I've done is correct then $\|T\| \leq 1$. Now I don't know how to continue to show that $\|T\| = 1$. Can I take $f = 1$ for this?