$$I=\int_0^2 x(8-x^3)^{\frac{1}{3}} \, dx$$ Being inept with integrals, this is my try,
$$\int x(8-x^3)^{\frac{1}{3}} \, dx = (-1)\int x(x^3-8)^{\frac{1}{3}} \, dx $$
Using the substitution method (Chebyshev); for $\int x^m(a+bx^n)^p \,dx$, where $m, n, p ∈ Q$, If $\frac{m+1}{n}+p ∈ Z$, then substitute $(ax^{-n}+b)=t^K$, where $K$ is the denominator of $p$;
$$\frac{(x^3-8)^{\frac{1}{3}}}{x}=t ,\, dx=\frac{dt}{\left(\frac{x}{(x^3-8)^{\frac{2}{3}}}-\frac{(x^3-8)^{\frac{1}{3}}}{x^2}\right)}$$
$$\int \frac{8t^3}{(t-1)^2(t^2+t+1)^2} \, dt=8 \left( \frac{1}{3} \int \frac{1}{t^3-1}\,dt-\frac{1}{3} \int \frac{t}{t^3-1} \, dt\right)$$
Continuing the partial fractions, the final result is; $$\frac{8}{3} \left( \frac{\ln(t-1)}{3}-\frac{t}{t^3-1}-\frac{\arctan \left(\frac{2t+1}{\sqrt3}\right)}{\sqrt3} \right)-\frac{4}{9} \ln(t^2+t+1) $$
On putting the bounds, $I=\frac{16\pi}{(\sqrt3)^5}$
However, this is a very tedious method. In search for alternate method, i tried for beta functions, it resembled the format (almost). To bring it into the beta function form;
$B(p,q) = \int_0^1 x^{p-1}(1-x)^{q-1} \, dx$;
I tried with $x^3=8y$, which gave $I=\frac{8}{3} B\left(\frac{2}{3},\frac{4}{3}\right)$ and using up almost all the properties;
$B(p,q)=\frac{\Gamma_p \Gamma_q}{\Gamma_{p+q}}$
$\Gamma_{p+1}=p(\Gamma_p)$
$\Gamma_p \Gamma_{1-p}=\frac{\pi}{sinp\pi}$, you get $I=\frac{16\pi}{(\sqrt3)^5}$.
I am interested in learning more ways to evaluate this integral.