I am reading "Calculus I" (in Japanese) by Shizuo Miyazima.
Theorem 6.5
Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of continuous functions on $[a,b]$.
Suppose $(f_n)_{n\in\mathbb{N}}$ converges uniformly to $f$.
Then, $f$ is also continuous on $[a,b]$ and $$\lim_{n\to\infty}\int_{a}^{b} f_n(x)dx=\int_{a}^{b} f(x)dx$$ holds.
Theorem 6.8
Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of $C^1$ functions on $[a,b]$.
Suppose $(f_n)_{n\in\mathbb{N}}$ converges pointwise to a function $f$ on $[a,b]$.
Suppose $(f'_n)_{n\in\mathbb{N}}$ converges uniformly to a function $g$ on $[a,b]$.
Then, $f$ is a $C^1$ function and $f'=g$ holds.
I wonder why the author assumed $(f_n)_{n\in\mathbb{N}}$ converges pointwise to a function $f$ on $[a,b]$ in Theorem 6.8.
Suppose $\lim_{n\to\infty}f_n(c)=d$ for some $c\in [a,b]$.
Then $\lim_{n\to\infty}\int_{c}^{x} f'_n(t)dt=\int_{c}^{x}g(t)dt$ holds by Theorem 6.5.
Since $\int_{c}^{x} f'_n(t)dt=f_n(x)-f_n(c)$ and $\lim_{n\to\infty}f_n(c)=d$, $\lim_{n\to\infty}f_n(x)=\int_{c}^{x}g(t)dt+d.$
So, $(f_n)_{n\in\mathbb{N}}$ converges pointwise to the function $\int_{c}^{x}g(t)dt+d$ on $[a,b]$.
So, I want to rewrite Theorem 6.8 as follows:
Theorem 6.8'
Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of $C^1$ functions on $[a,b]$.
Suppose $\lim_{n\to\infty}f_n(c)=d$ for some $c\in [a,b]$.
Suppose $(f'_n)_{n\in\mathbb{N}}$ converges uniformly to a function $g$ on $[a,b]$.
Then, $f$ is a $C^1$ function and $f'=g$ holds.
Is Theorem 6.8' right?