Using @Gary comment
$$A_n=\sum_{k = 1}^n {k!\frac{{n!}}{{k!(n - k)!}}} = n!\sum_{k = 0}^{n - 1} {\frac{1}{{k!}}}=e \,n\, \Gamma (n,1)$$
Asymptotically
$$A_n \sim \frac{1}{6} \sqrt{\frac{\pi }{2}} e^{1-n} n^{n-\frac{1}{2}} (12
n+1)-\frac{n+1}{n}$$ is a very decent approximation (relative error smaller than $0.01$% if $n>5$).
Solving for $n$ the equation
$$\log\left(\frac{1}{6} \sqrt{\frac{\pi }{2}} e^{1-n} n^{n-\frac{1}{2}} (12
n+1)-\frac{n+1}{n} \right)=\log(s)$$ will not make any problem using Newton method.
Let me try for $s=123456789$ with the ridiculous $n_0=1$. Newton iterates are
$$\left(
\begin{array}{cc}
k & n_k \\
0 & 1.00000 \\
1 & 7.31520 \\
2 & 11.4305 \\
3 & 11.0552 \\
4 & 11.0528 \\
\end{array}
\right)$$
Edit
We can generate the first estimate of Newton method for the zero of function
$$f(n)=\log(e \,n\, \Gamma (n,1))-\log(s)$$ starting with $n_0=1$. It is given by
$$n_1=1+\frac{\log (s)}{1-e \,\text{Ei}(-1)}$$ where appears the the exponential integral function.
Converted to rational numbers, this is
$$n_1=1+\frac{109}{174}\,\log(s)$$
For the worked example, this gives $n_1=12.6713$.
Using $s=10^k$ some results
$$\left(
\begin{array}{cccc}
k & n_1 & n_2 & \text{solution}\\
1 & 2.44241 & 2.70237 & 2.70019 \\
2 & 3.88482 & 4.29521 & 4.28579 \\
3 & 5.32723 & 5.64096 & 5.63655 \\
4 & 6.76963 & 6.84323 & 6.84305 \\
5 & 8.21204 & 7.95886 & 7.95713 \\
6 & 9.65445 & 9.01519 & 9.00608 \\
7 & 11.0969 & 10.0274 & 10.0058 \\
8 & 12.5393 & 11.0051 & 10.9666 \\
9 & 13.9817 & 11.9544 & 11.8953 \\
10 & 15.4241 & 12.8802 & 12.7972 \\
11 & 16.8665 & 13.7856 & 13.676 \\
12 & 18.3089 & 14.6734 & 14.5347 \\
13 & 19.7513 & 15.5455 & 15.3757 \\
14 & 21.1937 & 16.4038 & 16.2009 \\
15 & 22.6361 & 17.2495 & 17.0118 \\
16 & 24.0785 & 18.0838 & 17.8098 \\
17 & 25.5209 & 18.9078 & 18.5960 \\
18 & 26.9634 & 19.7221 & 19.3714 \\
19 & 28.4058 & 20.5276 & 20.1367 \\
20 & 29.8482 & 21.3249 & 20.8929 \\
\end{array}
\right)$$
Edit
Thanking @Gary who, in comments, pushed me, we have
$$ \frac{1}{6} \sqrt{\frac{\pi }{2}} e^{1-n} n^{n-\frac{1}{2}} (12
n+1)-\frac{n+1}{n}=s$$ Neglecting the $1$ gives
$$\sqrt{2 \pi } e^{1-n} n^{n+\frac 12}=s+1\implies e^{-(n+\frac 12)}\,n^{n+\frac 12}=\frac{(s+1)\,e^{\frac 32}}{\sqrt{2\pi}}$$ that what also approximate as
$$ e^{-(n+\frac 12)}\,\left(n+\frac 12\right)^{n+\frac 12}=\frac{(s+1)\,e^{\frac 32}}{\sqrt{2\pi}}$$
So
$$n+\frac 12=\frac{\log (k)}{W\left(\frac{\log (k)}{e}\right)}\qquad \text{where} \qquad k=\frac{(s+1)\,e^{\frac 32}}{\sqrt{2\pi}}$$
For $s=123456789$, this gives $n=12.0557$.
For $s=10^{20}$, it gives $n=21.7035$.
One or two iterations of Newton method would give the solution