Problem :
Find a geometric construction or a proof by hand to show :
$$\sin\left(1+\frac{1+\sqrt{5}}{2}\right)<1/2$$
As attempt I introduce the inequality :
$$\sin\left(1+\frac{1+\sqrt{5}}{2}\right)-1+\frac{1+\sqrt{5}}{2}-\frac{559}{500}<0$$
Then I introduce :
$$f(x)=\sin\left(1+x\right)-1+x-\frac{559}{500}$$
Or :
$$g(x)=\sin\left(x\right)+x-2-\frac{559}{500}$$
Then we can use power series around $x=610/233$ but it's tedious by hand .
How to solve the problem ?