I'm trying to solve an exercise in Brezis' Functional Analysis, i.e.,
Let $(E, |\cdot|)$ be a real Banach space. Let $T \in \mathcal L(E)$, i.e., $T:E \to E$ is a bounded linear operator. Assume that $\|T\| < 1$. Let $I:E \to E$ be the identity map.
- Prove that $(I-T)$ is bijective and that $$ \|(I-T)^{-1}\| \le \frac{1}{1- \|T\|}. $$
- Let $S_n := I+T+\cdots+T^{n-1}$. Prove that $$ \|S_n-(I-T)^{-1}\| \le \frac{\|T\|^n}{1- \|T\|}. $$
There are possibly subtle mistakes that I could not recognize in below attempt. Could you please have a check on it?
Assume $(I-T)u=0$. Then $u=Tu$ and thus $u= T^n u$ for $n \in \mathbb N^*$. Then $|u| \le \|T\|^n |u|$ for $n \in \mathbb N^*$. Then $|u| \le |u| \lim_n \|T\|^n=0$ and thus $u=0$. Then $I-T$ is injective.
Let $v \in E$. We want to find $u \in E$ such that $(I-T)u=v$. We define $K:E \to E$ by $K(u)=v+Tu$. Then $|K(u_1) - K(u_2)| = |T(u_1-u_2)| \le \|T\| |u_1-u_2|$. Then $K$ is a strict contraction. By Banach fixed-point theorem, $K$ has a fixed point. This means there is $u\in E$ such that $K(u)=u$. Then $v=(I-T)u$. So $I-T$ is surjective.
We have $\sum_{n=0}^\infty \|T^n\| \le \sum_{n=0}^\infty \|T\|^n = \frac{1}{1-\|T\|}$ because $\|T\|<1$. By characterization of a Banach space by absolute convergence, we get $K:= \sum_{n=0}^\infty T^n \in \mathcal L(E)$. First, $$ K(I-T)= (I-T)K = \sum_{n=0}^\infty T^n- \sum_{n=1}^\infty T^n = I. $$
Hence $K= (I-T)^{-1}$. The claim then follows.
2.
We have $$ S_n-(I-T)^{-1} = S_n-K=\sum_{k=n}^\infty T^k= T^n K. $$
Hence by (1), $$ \|S_n-(I-T)^{-1}\| \le \|T\|^n \cdot \|K\| \le \frac{\|T\|^n}{1- \|T\|}. $$